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1 Introduction

Regulators rely on information produced by banks in order to regulate them. For 

example, under the Basel II Accord, banks' internal risk models can be used to 

calculate regulatory capital. The idea behind this approach is that banks may know 

more than regulators about their own risk. After all, banks have strong incentives to 

develop good models for their own trading. Yet, a concern exists that while banks will 

use their best models for trading purposes, for the purpose of regulation, they will 

select models that underestimate risk. This concern, which is supported by empirical 

evidence,1 has led regulators to rethink whether the risk estimates that banks provide 

should be used to calculate regulatory capital. Recent proposals call to limit, or even 

stop, this practice.2

The first question we address in this paper relates to the concern above: Should

regulators attempt to find out all relevant information from banks, even if regulators

can do so without incurring any cost? In our model, a bank can create more than

one model and choose which models to reveal to the regulator. The regulator uses

the information from the models he observes to decide whether to allow the bank to

invest in some risky asset. The regulator also decides how much to monitor the bank,

which leads to an endogenous probability q that the regulator will find out the other

models that the bank generates.

As we explain below, there are two forces that push the optimal q in different

directions. A higher q allows the regulator to learn more from the information that the

bank produces. This can lead to better investment decisions from the regulator’s point

of view. However, a higher q may also induce the bank to produce less information

overall (in the sense of Blackwell, 1951). This is because if the regulator finds out the

information, he can use it to restrict investment when the bank wants to invest but

the regulator does not.

1See, for example, Behn, Haselmann, and Vig (2014); and Plosser and Santos (2014).
2 See, for example, “Regulator Suggests End to Banks’Self-Grading,” by Peter Eavis, New York 

Times, May 8, 2014; and “Basel Committee to Stop Banks Gaming Risk Models,” by Archie Van 
Reimsdjik, Wall Street Journal, November 2, 2015.
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The conflict of interest between the bank and the regulator could arise for various 

reasons. Banks do not internalize externalities, while regulators are concerned with 

systemic risk and take into account total social costs. Similarly, banks have limited 

liability, and, as such, shareholders do not necessarily maximize total firm value. Our 

main insights do not depend on the specific source of conflict.

For concreteness, we focus on one source of conflict. In our model, the regulator 

wants to invest only if a project has a positive net present value (NPV), but the 

bank, facing limited liability, wants to invest also in some projects that have negative 

NPV. This conflict of interest is also impacted by the fact that the bank has other 

assets, which could be used to pay debt holders when the project fails. Since both the 

value of these assets and the value of the project depend on the state of the world, the 

bank’s ideal investment rule may not be just a simple cutoff rule. For example, it may 

be optimal for a bank to invest in good states (i.e., when the project has positive 

NPV) and bad states (i.e., when the project has negative NPV and other assets are 

worthless) but not in intermediate states (i.e., when the value of the other assets is 

too high to lose). More generally, the bank’s ideal investment rule could include 

intervals of the state space in which the bank wants to invest and intervals in which 

the bank does not want to invest.

The bank can generate information to guide its investment decisions. Specifically,

the bank generates models, which are information partitions of the state space. We

restrict attention to information partitions, such that each element in the partition

is a convex set (i.e., an interval or a singleton). Then, the bank faces a tradeoff.

When the bank generates more information, the bank can make better investment

decisions for its equity holders. However, if the regulator finds out the information,

the regulator can use the information against the bank to ban investment when the

bank wants to invest but the regulator does not. The outcome of this tradeoff is

that, when the regulator sets a higher level of monitoring, the bank produces less

information. Consequently, the optimal level of monitoring could have an interior

solution.

3



We characterize the optimal level of monitoring. In particular, we provide nec-

essary and suffi cient conditions under which it is optimal to set q = 1. When these

conditions hold, it is optimal that the regulator observes all the models that the bank

creates. When these conditions do not hold, it is optimal that the bank creates two

sets of models. The bank reveals to the regulator the first set of models but does not

reveal the second set of models. The regulator allows the bank to invest as long as he

is convinced that the state of the world is suffi ciently high for the project to have a

nonnegative NPV, on expectation. The bank maintains discretion whether to invest

when the regulator allows it to invest.

Interestingly, there is a nonmonotone relationship between the optimal level of

monitoring and the bank’s private gain from producing more information. When the

bank’s private gain is high, the bank produces a lot of information even if it is highly

monitored. In this case, it is optimal to set q = 1 because the regulator can learn

everything the bank knows without impacting the amount of information that the

bank produces. If instead, the bank’s gain is intermediate, the regulator must set

a lower level of monitoring q < 1 to induce the bank to produce more information.

In this range, the optimal level of monitoring decreases when the bank’s gain from

producing information falls because it becomes harder to induce the bank to produce

information. Finally, when the bank’s private gain from producing information is

very low, the regulator can induce the bank to produce information only if the level

of monitoring is very low. But then the regulator does not learn much from the

information that the bank produces, and it is again optimal to set q = 1, even though

this reduces the overall amount of information that the bank produces.

Using this insight, we derive comparative statics as to how the optimal q changes

when the bank faces some exogenous cost of producing information, when the amount

of its debt holding changes, when the quality of its project changes, or when the

value of its existing asset changes. In general, the relationship is nonmonotone. For

example, for some parameter values, it is optimal to set a high level of monitoring for

banks that have either low cost or high cost of producing information, and a lower
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level of monitoring for banks that have a medium cost. Similarly, banks that have 

either high levels of debt or low levels of debt could face a high level of monitoring, 

while banks with a medium level of debt could face a lower level of monitoring. As for 

the amount of information produced, our model predicts that for a given (positive) 

level of monitoring, banks will produce less information when they have more debt, 

when the value of their existing assets falls, and, perhaps surprisingly, when they 

have higher quality projects. All these changes increase the bank’s gain from 

investing, and, hence, the fact that the regulator could use the information to ban 

investment has a more significant effect on the bank.

We also analyze a situation in which some public models already exist. We show

that when public models become more informative, the bank generates more infor-

mation. However, there is a nonmonotone relationship between the quality of the

public models and the optimal level of monitoring. Intuitively, there are two forces

that push the optimal level of monitoring in different directions. On the one hand,

with more public information, the regulator can monitor less because he already has

information. On the other hand, public information can increase the bank’s private

gain from producing information because the alternative of not producing information

is less attractive, as information already exists. This makes it easier for the regulator

to induce the bank to produce information and allows the regulator to increase the

probability of monitoring.

The paper proceeds as follows. The next section provides a literature review. 

Section 3 provides an example, and Section 4 presents the formal model. In Section 5, 

we analyze the benchmark case of an unregulated bank, and, in Section 6, we provide 

equilibrium analysis of a regulated bank. In Section 7, we do some comparative 

statics, and in Section 8, we analyze the case of public models. Section 9 illustrates 

how the insights of our model can be applied in other settings, such as corporate 

governance or when regulators use banks' internal risk models to calculate regulatory 

capital. Section 10 concludes. Proofs are in the Appendix.
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2 Literature review

One can think of our paper as a Bayesian persuasion problem (Kamenica and Gentzkow,

2011), in which one agent (the bank) generates a signal (a model) to persuade another 

agent (the regulator) to allow some action. A key difference between our paper and 

existing literature is that, in our setting, the bank can generate a second signal, which 

it does not reveal to the regulator. The bank can then use information from both 

signals to decide whether to take the action. Our paper allows us to answer questions 

such as whether and under what conditions the regulator can gain by committing not

to find out what the second signal is.

Our paper also relates to the literature on delegation of authority within organi-

zations, in particular, the literature that focuses on the tradeoff between incorporat-

ing more information into decision making and controlling decision-making authority

when the agent has relevant information. In a strategic communication setting, Des-

sein (2002), Harris and Raviv (2005, 2008, and 2010), Chakraborty and Yilmaz (2014),

and Grenadier, Malenko, and Malenko (2016) study the conditions under which the

principal should allocate decision-making authority to the agent. In this framework,

keeping decision-making authority may hurt the principal because the gains from do-

ing so are outweighed by the losses arising from imperfect information transmission

between the agent and the principal. In a related work, Aghion and Tirole (1997)

also analyze the optimal allocation of authority but without strategic communication

while emphasizing a distinction between formal and real authority. They show that

often the party with formal authority will delegate authority to another agent with

information. In our framework, the regulator can gain by delegating authority to the

bank. A key difference between our paper and the existing literature is that in our

setting, the regulator allocates authority based on the realization of a signal that the

bank produces (endogenously). In particular, if the realization of the signal(s) that

the bank reveals to the regulator is above some threshold and the regulator does not

observe the other signal(s), the regulator allows the bank to decide whether to invest.

Otherwise, the regulator decides.
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Our paper also relates to the literature on bank regulation in which the regulator

uses information that banks provide to set capital requirements. Prescott (2004)

studies a framework in which the bank has private information about its own risk, and

the regulator sets capital requirements based on the risk that the bank reports.3 The

source of ineffi ciency is that the bank may misrepresent its true risk. The regulator

can mitigate this problem by monitoring the bank.4 In our framework, the bank does

not know its own risk but can generate information. In contrast to earlier literature

on the benefits of monitoring, our model shows that too much monitoring could

have perverse effects. Monitoring diminishes the banks’incentive to produce valuable

information.

There is also a growing empirical literature on the effect of regulation that relies 

on banks’internal models. Plosser and Santos (2014) found systematic differences in 

risk estimates that large U.S. banks provided for the same loan. In particular, banks 

with lower regulatory capital reported lower probability of default, and the prices they 

set on their loans were poorly explained by their risk estimates. Behn, Haselmann, 

and Vig (2014) compare risk estimates that German banks provided on loan 

portfolios that shifted to the internal rating-based approach and loan portfolios that 

were waiting for approval for the new approach and for which capital was calculated 

based on the traditional risk-weights method. They show that, for the first group 

of loans, banks provided lower estimates of probability of default. Yet, the interest 

rates charged on these loans and actual default rates were higher. The findings of 

this literature are consistent with the idea that banks hide information from the 

regulator.5

Finally, the idea that a principal can benefit by committing not to monitor too

much also appears in Crémer (1995). In his model, a principal has a monitoring

technology, which allows him to obtain the reason behind a low output. The prin-

3See also Marshall and Prescott (2006).
4Blum (2008) shows that when the regulator has limited ability to audit or impose penalties,

minimum leverage ratios in addition to capital requirements can help.
5Some other related work include Begley, Purnanandam, and Zheng (2016), Firestone and

Rezende (2016), and Mariathasan and Merrouche (2014).
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cipal may benefit from ineffi cient monitoring because it allows him to pre-commit

to fire a high-quality agent who produced low output.6 In the context of regulation

of disclosure in the product market, Polinsky and Shavell (2012) show that forcing

firms to disclose information about product risk may lead firms to gather less in-

formation.7 In the context of corporate governance, Burkart, Gromb, and Panunzi

(1997) show that excessive monitoring can reduce managerial effort to learn about

new investments, and that dispersed ownership could act as a commitment device not

to exercise excessive control.

3 An example

There is a bank and a regulator. The bank has a debt liability with a face value of $1. 

The bank also has $1 in cash, other existing assets, and a new investment opportunity 

(project). The project requires an investment of $1. It can either succeed and yield 

$2 or fail and yield nothing. The project’s success probability and the value of the 

bank’s existing assets (other than cash) depend on the unobservable state of nature, 

as described in Table 1. Table 1 also shows the project’s NPV in each state, namely, 

the project’s expected payoff minus the initial investment.

Table 1
State s1 s2 s3 s4

Probability of state 0.25 0.25 0.25 0.25
Project’s success probability 0.1 0.4 0.4 0.8
Value of existing assets 0.3 0.3 0.8 1
Project’s NPV −0.8 −0.2 −0.2 0.6

There is a conflict of interest between the bank and the regulator. The regulator

wants to maximize total surplus, which is the sum of payoffs to debt holders and

equity holders. Hence, the regulator wants to invest only if the project has positive

NPV. The bank has limited liability and acts as to maximize the expected payoff to

its equity holders. Hence, as we illustrate below, the bank wants to invest not only

6See also Cohn, Rajan, and Strobl (2013), who show that when credit rating agencies screen more
heavily, issuers have stronger incentive to manipulate.

7See also Shavell (1994).
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when the project has positive NPV but also in some states in which the project has

negative NPV.

To see that, consider state s2. If the bank does not invest, debt holders are fully

paid. However, in case of investment, if the project fails, which occurs with probability

0.6, the bank cannot pay off its debt. In this case, the bank’s debt holders obtain the

bank’s existing assets, which are worth only 0.3. The expected loss for debt holders

due to investment in state s2 is then 0.6×(1−0.3) = 0.42. From the perspective of the

bank’s equity holders, this is beneficial because this is a transfer of wealth from debt

holders. Since the sum of this gain (0.42) and the project’s NPV in state s2 (−0.2)

is positive, the bank wants to invest in state s2. Table 2 repeats these calculations

for the other three states. It follows that the bank wants to invest in states s2 and s4

but not in states s1 and s3.

Table 2
State s1 s2 s3 s4

Gain from default 0.63 0.42 0.12 0
Project’s NPV + Gain from default −0.17 0.22 −0.08 0.6
Bank’s ideal investment rule Don’t invest Invest Don’t invest Invest

If the regulator knew the state, he would allow the bank to invest only in state s4.

However, the regulator is not an expert in producing information. The only way for

the regulator to learn more about the state is to rely on information that the bank

produces.

The bank can generate two types of signals. The first signal is very informative. It

fully reveals the state. The second signal is less informative. It tells only whether the

success probability is 0.1 or above 0.1. In other words, the second signal tells whether
the true state is in the set {s1} or in the set {s2, s3, s4}. The regulator cannot dictate 

to the bank which signal (or signals) to generate, but he can force the bank to disclose 

the signal realization. Putting it differently, the regulator has a monitoring 

technology that allows him to find out the signals that the bank generates. Note that 

if the bank does not generate any signal, the regulator would ban investment because 

the project’s expected NPV, averaged across all states, is negative.

Suppose first that the regulator monitors the bank. Which signal will the bank
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generate? If the bank generates the very informative signal, the regulator would allow

it to invest only in state s4. The expected gain for the bank’s equity holders is then

0.25 × 0.6. If the bank generates the less informative signal, the regulator will ban

investment when he learns that the state is s1 but will allow investment when the state

is in {s2, s3, s4}. The last part follows because conditional on being in {s2, s3, s4}, the 
project has a positive NPV. The bank will then invest in the three states s2, s3, s4,

yielding an expected gain of 0.25 × (0.22 − 0.08 + 0.6) to its equity holders. Hence, 

the bank will generate the less informative signal, as it leads to a higher gain for its 

equity holders.

Now suppose the bank can generate both signals and reveal to the regulator only

the less informative one. In other words, the regulator does not monitor the bank.

As before, the regulator will allow investment only in states {s2, s3, s4}. However,

now the bank can use the information from the more informative signal to decide

whether to invest. So, the bank will invest only in states s2 and s4, in which the gain

to its equity holders is positive. From the regulator’s point of view (and also from

the bank’s), this outcome is preferred to the outcome when the bank is monitored

because the bank does not invest in state s3. Hence, the regulator will not monitor

the bank.

The result above changes when the bank has less debt. Suppose the face value of

debt is only $0.8. Now the bank’s equity holders gain from defaulting on the bank’s

debt only in states s1 and s2, in which the value of existing assets is less than the

face value of debt. As we show in Table 3, the bank will still want to invest only

in states s2 and s4. However, the bank’s incentives to produce information change.

Now the bank will produce the more informative signal even if it is being monitored.

To see why, note that if the bank generates the more informative signal, it obtains
0.25 × 0.6, as in the case of debt with a face value of 1. If the bank generates the less 

informative signal, it obtains only 0.25 × (0.1 − 0.2 + 0.6). Hence, the bank will 

generate the more informative signal, although it knows that it will be forced to reveal 

the information. From the regulator’s perspective, this is the best possible outcome.
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Hence, the regulator will monitor the bank.

Table 3
State s1 s2 s3 s4

Gain from default 0.45 0.3 0 0
Project’s NPV + Gain from default −0.35 0.1 −0.2 0.6
Bank’s ideal investment rule Don’t invest Invest Don’t invest Invest

We can interpret the signals in this example as internal risk models that the bank

generates for regulatory purpose. The example illustrates three points. First, the

regulator could benefit from relying on internal risk models that the bank generates.

Second, the regulator could gain by allowing the bank to produce two sets of models.

The first model is used to persuade the regulator to allow the bank to invest, while

the second model – which is not shared with the regulator – is used by the bank to

decide whether to invest when the regulator allows it to do so. Third, whether the

regulator could gain by allowing the bank to produce two sets of models depends on

the bank’s private gain from producing information, which, in turn, depends on bank

characteristics, such as how much debt the bank has.

4 The model

The formal model generalizes the example in Section 3. In particular, we assume a

continuous state space and allow the bank to choose from a larger set of signals. We

refer to these signals as models. In addition, we allow for partial monitoring, which

induces a probability q ∈ [0, 1] that the regulator will find out all the models that the

bank has generated.

4.1 Economic environment

As in the example, the bank’s assets consist of cash, which is normalized to 1, a

risky asset, and a new investment opportunity (project). The value of the risky asset

depends on the unobservable state ω, according to some continuous function v(ω).

The state ω is drawn from the set Ω = [0, 1], according to a continuous cumulative

distribution function F (everything is common knowledge). The value of the new
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project also depends on the state. The new project requires an investment of 1. It

generates x > 1 with probability ω and 0 with probability 1− ω.8 The bank also has

a debt liability with face value D ≤ 1. The bank has limited liability.

The bank acts to maximize the expected payoffto its equity holders. The regulator

maximizes total surplus, which is the sum of payoffs to debt holders and equity

holders.

4.2 Information production

The bank can generate information about ω by creating models. A model is an

information partition of Ω, with the added requirement that each element in the

partition is a convex set. Formally:

Definition 1 A model is defined by a set of indexes I ⊂ R and a collection of sets

P = {Pi}i∈I, such that the following hold:

1. ∪i∈IPi = Ω.

2. For every i 6= j, Pi ∩ Pj = ∅.

3. For every Pi ∈ P and λ ∈ (0, 1), if ω1, ω2 ∈ Pi, then λω1 + (1− λ)ω2 ∈ Pi.

The convexity assumption (Part 3 in Definition 1) implies that each element is

either a singleton or an interval. We let P (ω) stand for the set in P to which ω

belongs. So, when the realized state is ω ∈ Ω, the model P tells that the event P (ω)

has occurred. For example, a model that consists of only singletons fully reveals ω. A

model that consists of two intervals tells whether ω is above or below some threshold.

We can think of a model as a collection of experiments, where each experiment tells

whether the state is above or below some threshold.

The bank can create more than one model. With probability q, the regulator

observes all the models that the bank creates. With probability 1 − q, the regula-

tor observes only the models that the bank chooses to reveal. The probability q is

8The nature of the results remains if the project’s probability of success depends on the state
according to some arbitrary function that is (weakly) increasing in the state.
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endogenous and determined by the regulator before the bank creates models. For

example, a higher q could capture the idea that the regulator devotes more resources

into monitoring the bank (e.g., by having more staffon site). In this case, it is natural

to assume that the regulator can precommit to acting according to q. For simplicity,

we assume that all choices of q entail the same cost.9 The regulator can allow or ban

investment based on the information it has about ω. However, the regulator cannot

precommit to investment rules that are suboptimal ex post.

Without loss of generality, we can assume that the bank generates only two models

PB, PR such that model PB contains all the information that the bank produces,

and model PR contains only the information that the bank chooses to reveal to the

regulator. In particular, if the bank creates m models P1, ...,Pm and reveals to the

regulator only the first l ≤ m models, we can define for every ω ∈ Ω, PB(ω) =

∩mj=1P
j(ω) and PR(ω) = ∩lj=1P

j(ω). We refer to models PB and PR as the bank

model and regulator model, respectively. Note that PB is at least as informative as

PR.

4.3 Sequence of events

The sequence of events is as follows:

1. The regulator chooses q ∈ [0, 1] and publicly announces it.

2. The bank chooses models PR and PB.

3. Nature draws the state ω. The bank observes PB(ω). With probability q, the

regulator observes PB(ω). With probability 1−q, the regulator observes PR(ω).

4. The regulator allows or bans investment.

5. If investment is allowed, the bank chooses whether to invest.

6. The project either succeeds or fails. Debt holders and equity holders get paid.

9This assumption helps us focus on the main tradeoff in our paper. It is easy to relax this
assumption, but relaxing this assumption does not provide any interesting insights.
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We focus on perfect Bayesian equilibria of the game above. Assume that if the

bank is indifferent between investing and not investing, the bank invests. If the

regulator is indifferent between allowing and banning investment, the regulator allows

investment.

5 Unregulated bank (benchmark)

We start with the benchmark case in which the bank is unregulated; that is, the reg-

ulator cannot ban investment. In this case, we can assume, without loss of generality,

that the bank generates only one model, which fully reveals the state. That is, for

every ω ∈ Ω, PR(ω) = PB(ω) = ω.

We derive the bank’s ideal investment rule as follows. If the bank does not invest,

debt is riskless, and the bank’s equity holders obtain

v(ω) + 1−D. (1)

If the bank invests, debt holders obtainD when the project succeeds andmin{v(ω), D}

when the project fails. So, if the bank invests, the expected payoffto the bank’s equity

holders is

ω[x+ v(ω)−D] + (1− ω) max{v(ω)−D, 0}. (2)

Denote the project’s NPV in state ω by

N(ω) ≡ ωx− 1.

The expected gain to the bank’s equity holders from investing in state ω [i.e., (2)

minus (1)] is:

G(ω) ≡ N(ω) + (1− ω) max{D − v(ω), 0}. (3)

The second term in (3) is the expected gain to the bank’s equity holders from de-

faulting on the bank’s debt when the project fails. This gain arises when the value of

the risky asset is less than the face value of debt. In this case, equity holders benefit

at the expense of debt holders, who get paid less than the promised amount.

The bank invests if and only if G(ω) ≥ 0.
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Lemma 1 G(ω) ≥ 0 if and only if either (i) ω ≥ 1
x
; or (ii) ω < 1

x
and v(ω) ≤

D + N(ω)
1−ω .

Lemma 1 says that an unregulated bank invests if either (i) the project has positive

NPV; or (ii) the project has negative NPV, but the value of the bank’s existing asset,

v(ω), is less than D + N(ω)
1−ω .

Figure 1 illustrates the functionD+ N(ω)
1−ω , which is convex and increasing in ω, and

the function v(ω). The bank’s ideal investment rule depends on how the two functions

intersect. In general, the bank’s ideal investment rule is composed of intervals in which

the banks invests and intervals in which the bank does not invest. To simplify the

exposition, we assume that the functions D + N(ω)
1−ω and v(ω) intersect at a finite

number of points. Then, there exist a finite set of numbers b1 > a1 > ... > bl > al,

such that G(ω) ≥ 0 if and only if ω ∈ ∪li=1[ai, bi].

0.5 1.0
0.0

0.5

1.0

1/x

Figure 1. The figure illustrates the function v(ω) (in light green) and the function D + N(ω)
1−ω (in

blue). The bank’s ideal investment rule is to invest when the state ω is in the red intervals. This
happens when either (i) ω ≥ 1

x , so the project has positive NPV; or (ii) ω <
1
x and the green line is

below the blue line.

6 Regulated bank

Consider now a regulated bank. If v(ω) > D + N(ω)
1−ω for every ω <

1
x
, it follows from

Lemma 1 that the bank wants to invest if and only if the project has positive NPV.

In this case, there is no conflict of interest between the bank and regulator, and so,

regulation is unnecessary.
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The rest of this paper focuses on the case in which v(ω) ≤ D + N(ω)
1−ω for some

ω < 1
x
. In this case, the bank and the regulator do not agree on the investment rule.

Both want to invest when the project has a positive NPV (ω ≥ 1
x
), but the bank

wants to invest also in some states in which the project has a negative NPV [Part

(ii) in Lemma 1]. We explore optimal regulation in this case. We first characterize

equilibrium outcomes, taking q as given. Then, we solve for an optimal q (i.e., a q

that the regulator chooses in an equilibrium).

6.1 Equilibrium outcomes for a given q

We solve the game backward. Suppose the bank chooses models PR, PB. If the 

regulator allows investment, the bank invests if and only if the expected gain to its 

equity holders is positive. Anticipating the bank’s behavior, the regulator allows 

investment if and only if he expects the project to have a positive NPV when the 

bank invests.

The next lemma simplifies the analysis.

Lemma 2 For any equilibrium outcome, there exists ωB, ωR ∈ Ω, such that ωR ≤ ωB 

and:

(i) When the regulator observes model PB, investment takes place if ω > ωB but

not if ω < ωB.

(ii) When the regulator observes model PR, (a) investment takes place if ω > ωB;

(b) investment does not take place if ω < ωR; and (c) if ω ∈ (ωR, ωB), investment

takes place when G(ω) > 0 but not when G(ω) < 0.

The first part in Lemma 2 follows because the project’s NPV is increasing in ω,

and each set in the model partition is convex. This implies that if the regulator

allows the bank to invest in state ω′, he also allows the bank to invest in higher states

ω > ω′. Moreover, since the bank and the regulator share the same information,

the bank invests if the regulator allows it to because the regulator allows investment

only if the project has nonnegative NPV, in expectation. If, instead, the regulator

observes only PR, as in the second part in Lemma 2, the regulator allows investment
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when ω ≥ ωR, but now the bank decides whether to invest based on information

from the more informative model PB. In equilibrium, the bank chooses model PB, so

that whenever ω ∈ (ωR, ωB), the bank invests according to its ideal investment rule:

namely, if G(ω) > 0 but not if G(ω) < 0.

Lemma 2 implies that, without loss of generality, we can focus on the case in

which models PB and PR take the simple form:

PB(ω) =

{
ω if ω < ωB
[ωB, 1] otherwise.

(4)

PR(ω) =

{
ω if ω < ωR
[ωR, 1] otherwise.

(5)

In other words, model PB fully reveals the state below ωB but does not generate

any information above ωB; model PR fully reveals the state below ωR but does not

generate any information above ωR.

The problem of finding models PB and PR reduces to finding the thresholds ωB

and ωR. We must have:

E[N(ω̃)|ω̃ ≥ ωB] ≥ 0 (6)

E[N(ω̃)| ω̃ ≥ ωB or ω̃ ∈ [ωR, ωB) and G(ω̃) ≥ 0] ≥ 0. (7)

Equation (6) ensures that when the regulator observes PB, he allows the bank to

invest when ω ≥ ωB. Equation (7) ensures that when the regulator observes only

PR, he allows the bank to invest when ω ≥ ωR. Note that in the second case, the

regulator understands that the bank will use his second model PB to decide whether

to invest.

The bank’s expected payoff is:

V (ωB, ωR) ≡ (1− q)
∫ ωB

ωR

1{ω:G(ω)>0}G(ω)dF (ω) +

∫ 1

ωB

G(ω)dF (ω). (8)

In particular, from Lemma 2, we know that the bank always invests when ω ≥ ωB.

If instead ω ∈ (ωR, ωB), the bank invests only if the regulator does not observe PB,

which happens with probability 1− q, and G(ω) ≥ 0.

Since the term inside the first integral in (8) is positive, the bank would like to

set ωR as low as possible subject to Equation (7). Hence, we can assume, without
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loss of generality, that

ωR = ω̄R(ωB), (9)

where ω̄R(ωB) is the lowest ωR ∈ Ω that satisfies Equation (7).10

As for ωB, we proceed in two steps. First, we derive a necessary and suffi cient

condition for ωB to be an equilibrium threshold. Then, we derive a closed-form

solution.

Denote the lowest ωB ∈ Ω that satisfies Equation (6) by ω̄B. Clearly, we must

have

ωB ≥ ω̄B. (10)

In addition, for every ω′B ≥ ω̄B, we must have

V (ωB, ω̄R(ωB)) ≥ V (ω′B, ω̄R(ωB)). (11)

Equation (11) rules out a deviation in which the bank chooses model PB with 

threshold ω′B instead of ωB, while keeping model PR unchanged with threshold 

ω¯R(ωB). It turns out that ruling out this deviation is not only a necessary equi- 

librium condition but is also a suffi  cient condition. Formally:

Lemma 3 ωB ∈ Ω is an equilibrium threshold if and only if ωB ≥ ω̄B and Equation

(11) holds for every ω′B ∈ Ω such that ω′B ≥ ω̄B.

We can reduce the set of potential equilibrium thresholds even further. Let K

denote the set of left corners of intervals in which an unregulated bank invests (e.g.,

the left corners of the red intervals in Figure 1). In equilibrium, we must have

ωB ∈ K ∪ {ω̄B}. To see why, note that if ωB lies inside an interval in which the

bank does not want to invest, the bank can increase its payoff by increasing ωB. If

ωB lies inside an interval in which the bank wants to invest, the bank can increase its

payoff by reducing ωB, but ωB cannot fall below ω̄B.

10Any ωR ∈ [ω̄R(ωB), ω̂R(ωB)] will give the same outcome, where ω̂R(ωB) denotes the lowest
ωR ∈ Ω that satisfies both Equation (7) andG(ωR) ≥ 0. Any other ωR will give a worse outcome
for the bank.
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Formally, define a set Ω0 ⊂ Ω as follows:

Ω0 =

{
{ω ∈ K : ω ≥ ω̄B} ∪ {ω̄B} if G(ω̄B) ≥ 0
{ω ∈ K : ω ≥ ω̄B} otherwise

We can replace Lemma 3 with the following:

Lemma 4 ωB ∈ Ω is an equilibrium threshold if and only if ωB ∈ Ω0 and Equation

(11) holds for every ω′B ∈ Ω0.

We can use Lemma 4 to derive a closed-form solution for ωB as a function of

q. To obtain intuition, we start with the simple case in which Ω0 contains only two

thresholds ω1 and ω2 (ω1 > ω2). Let

ρ(ω1, ω2) ≡
|
∫ ω1
ω2

1{ω:G(ω)<0}G(ω)dF (ω)|∫ ω1
ω2

1{ω:G(ω)>0}G(ω)dF (ω).
(12)

Proposition 1 If Ω0 contains only two thresholds ω1 > ω2, then:

1. If q < ρ(ω1, ω2), ωB = ω1 is a unique equilibrium threshold.

2. If q = ρ(ω1, ω2), both ωB = ω1 and ωB = ω2 are equilibrium thresholds.

3. If q > ρ(ω1, ω2), ωB = ω2 is a unique equilibrium threshold.

Intuitively, choosing a higher threshold ωB corresponds to producing more infor- 

mation. This is beneficial for the bank because the bank can make better investment 

decisions for its equity holders. However, producing more information can also be 

costly for the bank because the regulator can use the extra pieces of information to 

ban investment in some states in which the bank wants to invest. This tradeoff for 

the bank is captured by the ratio ρ in Equation (12). Specifically, the numerator 

reflects the gain from choosing the higher threshold ωB = ω1,; namely, the bank avoids
investment when ω ∈ (ω2, ω1) and G(ω) < 0. The denominator (times q) captures the 

cost; namely, the regulator bans investment when ω ∈ (ω2, ω1) and G(ω) > 0. Since 

the expected cost is increasing in q, the bank prefers the higher threshold only if q is 

suffi  ciently low.

Proposition 1 extends to the general case in which Ω0 contains n thresholds ω1 >

ω2 > ... > ωn. In particular, the equilibrium threshold ωB can be described by
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a step function, which is decreasing in q. Consistent with Part 2 in Proposition

1, at the corners of steps, there could be more than one equilibrium threshold. In

what follows, we focus on the equilibrium threshold ωB that is most preferred by the

regulator: namely, the equilibrium with the highest threshold. This equilibrium is

also weakly preferred by the bank.11 We let ωB(q) stand for the equilibrium threshold

ωB for a given q.

Theorem 1 There exist δ1, δ2, ..., δm ∈ Ω0 such that

ωB(q) =


δ1 if q ∈ [0, q̄1]
δ2 if q ∈ (q̄1, q̄2]
...
δm if q ∈ (q̄m−1, 1],

(13)

where q̄i = ρ(δi, δi+1) for i ∈ {1, 2, ...,m− 1}. Moreover, δ1 = ω1 > δ2 > ... > δm.

The proof of Theorem 1 (in the Appendix) fully defines the number of steps m

and the values for δ1, δ2, ..., δm. Note that q̄i is the bank’s net gain from producing

more information by moving from a lower threshold ωB = δi−1 to a higher threshold

ωB = δi. The theorem captures the intuition that when the regulator monitors more,

the bank produces less information.12

6.2 Optimal q

The regulator’s payoff from choosing a probability of monitoring q is:

u(q) ≡ (1− q)
∫ ωB(q)

ω̄R(ωB(q))

1{ω:G(ω)≥0}N(ω)dF (ω) +

∫ 1

ωB(q)

N(ω)dF (ω). (14)

The regulator’s payoff is similar to the bank’s [Equation (8)], but instead of G(ω), we

have N(ω). In equilibrium, the regulator chooses q ∈ [0, 1] to maximize (14).

Since ωB(q) is a left-continuous step function and the first integral in (14) is

nonpositive, the regulator’s problem has a solution that lies at the (right) corners of

11In particular, when ωB is higher, the bank can satisfy Equation (7) by setting a weakly lower
ωR.
12Consistent with Blackwell (1951), less information here means less information that is relevant

to investment decisions.
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the intervals that define the step function in Theorem 1. That is, there is a solution

q ∈ {q̄1, ..., q̄m−1, 1}. In general, a solution to the regulator’s problem cannot lie inside

an interval (q̄i−1, q̄i), except for the case in which q = 1 is optimal and the first integral

in (14) equals zero. In this case, any q ∈ (q̄m−1, 1] is optimal. Formally, let q̄0 ≡ 0.

Then:

Lemma 5 If the step function in Theorem 1 has only one step, then u(1) ≥ u(q) for

every q ∈ [0, 1). If the step function has m ≥ 2 steps, then:

1. u(q̄1) > u(0) and u(q̄i) > u(q) for every q ∈ (q̄i−1, q̄i) and i ∈ {1, ...,m− 1}.

2. u(1) ≥ u(q) for every q ∈ (q̄m−1, 1).

Moreover, all inequalities above are strict if ωB(1) > ω̄B and G(ω) > 0 for some

ω < ωB(1).

We illustrate our main results for the case in which Ω0 = {ω1, ω2}, where ω1 >

ω2 > ω̄B. If ρ(ω1, ω2) ≥ 1, then consistent with Proposition 1, the step function in

Theorem 1 has only one step: ωB(q) = ω1 for every q ∈ [0, 1]. If ρ(ω1, ω2) < 1, the

step function has two steps:

ωB(q) =

{
ω1 if q ≤ ρ(ω1, ω2)
ω2 if q > ρ(ω1, ω2)

(15)

Hence, if ρ(ω1, ω2) ≥ 1, it is optimal to set q = 1. If ρ(ω1, ω2) < 1, setting q = 1 is

optimal only if u(1) ≥ u(ρ(ω1, ω2)). This condition reduces to ρ(ω1, ω2) ≤ q̂, where

q̂ ≡
|
∫ ω2
ω̄R(ω1)

1{ω:G(ω)≥0}N(ω)dF (ω)| − |
∫ ω1
ω2

1{ω:G(ω)<0}N(ω)dF (ω)|
|
∫ ω2
ω̄R(ω1)

1{ω:G(ω)≥0}N(ω)dF (ω)|+ |
∫ ω1
ω2

1{ω:G(ω)≥0}N(ω)dF (ω)|
. (16)

Observe that q̂ < 1, and that for q̂ > 0 to hold, we must have G(ω) > 0 for some

ω < ω2. We obtain that:

Proposition 2 If Ω0 = {ω1, ω2}, where ω1 > ω2 > ω̄B, then:

1. If ρ(ω1, ω2) > q̂, the regulator sets q = min{ρ(ω1, ω2), 1}, and the bank responds

by choosing ωB = ω1.

2. If ρ(ω1, ω2) < q̂, the regulator sets q = 1, and the bank responds by choosing

ωB = ω2.

3. If ρ(ω1, ω2) = q̂, both q = ρ(ω1, ω2) and q = 1 are optimal.
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Recall that ρ(ω1, ω2) is the bank gain (relative to cost) from producing information

(i.e., choosing ωB = ω1 rather than ωB = ω2). Proposition 2 says that it is optimal

to set q = 1 when the bank’s gain from producing information is either suffi ciently

high or suffi ciently low. In the first case, the bank produces information even if q = 1.

Setting q = 1 is uniquely optimal because any other q induces the bank to produce

the same amount of information for itself but reveal less information to the regulator.

In the second case, when the bank’s gain from producing information is low, the

regulator can still induce the bank to produce information, but only if he precommits

to a very low level of monitoring. But then, the regulator cannot make much use

of the information that the bank produces and is better off monitoring more, even

though this induces the bank to produce less information overall.

The intuition above extends to the general case. If the step function in Theorem

1 has only one step, q = 1 is optimal. This case happens if ρ(ω1, ω) ≥ 1 for every

ω ∈ Ω0 such that ω < ω1. If the step function has m > 1 steps, q = 1 is optimal only

if u(1) ≥ u(q̄i) for every i ∈ {1, 2, ...,m− 1}. The last condition reduces to

q̄i ≤
|
∫ δm
ω̄R(δi)

1{ω:G(ω)≥0}N(ω)dF (ω)| − |
∫ δi
δm

1{ω:G(ω)<0}N(ω)dF (ω)|

|
∫ δm
ω̄R(δi)

1{ω:G(ω)≥0}N(ω)dF (ω)|+ |
∫ δi
δm

1{ω:G(ω)≥0}N(ω)dF (ω)|
(17)

for every i ∈ {1, 2, ...,m− 1}.

Theorem 2 If Ω0 = {ω1}, then q = 1 is optimal and is uniquely optimal if ω1 > ω̄B

and G(ω) > 0 for some ω < ω1. If Ω0 contains at n ≥ 2 thresholds, then:

1. q = 1 is optimal if and only if either the step function in Theorem 1 has only

one step (i.e., minω∈Ω0:ω<ω1 ρ(ω1, ω) ≥ 1) or the step function has m > 1 steps and

Equation (17) holds for every i ∈ {1, 2, ...,m− 1}.

2. q = 1 is uniquely optimal if either minω∈Ω0:ω<ω1 ρ(ω1, ω) ≥ 1 or ωn > ω̄B and

Equation (17) holds with strict inequalities for every i ∈ {1, 2, ...,m− 1}.

7 Comparative statics

We showed that it is optimal to set a high level of monitoring when the bank’s gain

from producing information is either suffi ciently high or suffi ciently low. We can
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use this insight to derive some comparative statics. We illustrate for the case in

which Ω0 = {ω1, ω2}, where ω1 > ω2 > ω̄B. We focus on the case q̂ > 0, in which

changing the gain from producing information ρ(ω1, ω2) has a nonmonotone effect on

the optimal q.

We start our discussion on comparative statics with a formal analysis when in-

formation production is costly. Suppose the bank incurs a cost z > 0 if it produces

information on states above ω2. That is, the bank incurs the cost if it chooses a model

that includes a set in (ω2, 1]. As before, we can focus, without loss of generality, on

models that take the simple form as in Equations (4) and (5). So, the bank’s expected

payoff is V (ωB, ωR)− z1{ωB>ω2}.

The cost z does not change the set Ω0 from which the bank chooses ωB, but

it changes the bank’s private gain from producing information.13 Specifically, for

Proposition 1 to hold, instead of ρ(ω1, ω2), we must have ζ(z), where

ζ(z) =
|
∫ ω1
ω2

1{ω:G(ω)<0}G(ω)dF (ω)| − z∫ ω1
ω2

1{ω:G(ω)≥0}G(ω)dF (ω).
(18)

Intuitively, the cost z reduces the benefits from producing information, and this is

reflected in the numerator of Equation (18).
Using the logic from the previous section, the optimal q is as follows: If ζ(z) ≥ 1, it 

is optimal to set q = 1, and the bank responds by choosing ωB = ω1. This case happens 

when z is suffi  ciently low. If instead ζ(z) < 1, the regulator compares

between choosing q = 1 and choosing q = ζ(z). In the first case, the bank responds by

choosing ωB = ω2, and in the second case, the bank responds by choosing ωB = ω1.

The regulator also takes into account the social cost z of producing information. So,

setting q = 1 is optimal only if u(1) ≥ u(ζ(z))− z. Since u(ζ(z))− z is decreasing in

z, the last condition holds only if z is suffi ciently high.

Proposition 3 There exists z2 ∈ R such that:
13Note that a different specification for the cost function (e.g., assuming that the cost is zωB)

could potentially change the set Ω0. Although the main force and intuition we identify here will still
be valid, some of the derivations and arguments may be more convoluted (see also Footnote 15).
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1. If z < z2, the regulator sets q = min{1, ζ(z)} and the bank responds by choosing

ωB = ω1. In this range, q is decreasing in z.

2. If z > z2, the regulator sets q = 1, and the bank responds by choosing ωB = ω2.

3. If z = z2, the regulator is indifferent between setting q = 1 and setting q = ζ(z).

Part 1 captures the intuition that if the cost of producing information is suffi ciently

low, the regulator can induce the bank to produce information while still maintaining

a relatively high level of monitoring. Part 2 captures the intuition that as the cost

of producing information increases, it becomes too costly, or even impossible, for the

regulator to induce the bank to produce information. In this case, it is optimal to set

a high level of monitoring, even though the bank will produce less information.

In the remainder of this section, we discuss other comparative statics that might

be of interest. In particular, model parameters, such as D and X, affect the bank’s

gain from investing, G(ω), which, in turn, affects ρ(ω1, ω2).

For example, when the bank’s debt level D increases, or when the value of its

existing asset v(ω) falls (e.g., when the curve v(ω) shifts downward), the bank’s gain

from default increases, and so, G(ω) increases. An increase in project cash flows

x also increases G(ω), as the project’s NPV increases. In all three cases, ρ(ω1, ω2)

becomes lower, which follows directly from Equation (12), noting that the numerator

decreases and the denominator increases. Intuitively, when the bank’s gain from

investment increases, the bank has less incentive to produce information because the

cost that the regulator will use the information to ban investment becomes more

significant, while at the same time, the benefit from producing information to avoid

investment in negative NPV projects becomes less significant.

Hence, for a given q > 0, an increase in D, an increase in x, or a reduction in

v(ω), lead the bank to produce less information.14

As for the optimal q, under some regularity conditions,15 the fact that model para-

14Note that these parameter changes could also affect the set {ω : G(ω) = 0}, and hence, the
set Ω0 from which the bank chooses ωB . This effect also works in the same direction, reducing the
amount of information that the bank produces. For example, when D increases, the thresholds ω1
and ω2 become lower.
15Such conditions are needed because, as noted earlier, the set Ω0 could change. This could affect
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meters affect the bank’s gain from producing information leads to similar 

implications as in Proposition 2. 

Specifically, with respect to the bank debt level, when D is very low, the bank has 

strong incentives to produce information and, therefore, the regulator chooses a high 

level of monitoring without much perverse effect. As D increases, the regulator needs 

to lower the level of monitoring to induce information production. Finally, when D is 

suffi  ciently high, the regulator moves back to full monitoring as information 

production is very diffi  cult to induce.

As for the asset value v(ω), the predictions are opposite to those related to D.

When asset values are high, the regulator monitors extensively, as the bank has strong

incentives to produce information. When asset values are moderate, the regulator

monitors less to induce the bank to produce more information. When asset values

are low, the regulator monitors extensively, but the bank produces less information.

Finally, as for the project cash flows x, when x is low, the regulator monitors

extensively, and the bank produces a lot of information. When x is medium, the

regulator monitors less to induce the higher level of information production. When

x is suffi ciently high, the regulator monitors extensively, but the bank produces less

information.

8 Public information

Suppose everyone is endowed with some model P̂. In other words, model P̂ is public

information. For example, we can think of P̂ as existing rules in place that are

common knowledge. So, in step 3 in the sequence of events, the bank observes PB(ω)

and P̂ (ω). As for the regulator, with probability q, he observes PB(ω) and P̂ (ω), and

with probability 1− q, he observes PR(ω) and P̂ (ω).

Let φ1 and φ2 be the corners of the information set in P̂ that contains the state
1
x
. That is, φ1 = inf{ω ∈ Ω : 1

x
∈ P̂ (ω)} and φ2 = sup{ω ∈ Ω : 1

x
∈ P̂ (ω)}. For

the regulator’s gain from implementing a higher level of information production versus a lower level
of information production. Moreover, with respect to x, we should also take into account the direct
effect of x on the regulator’s payoff.
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any PB and PR, if ω < φ1, the regulator will ban investment. Similarly, if ω > φ2,

the regulator will allow investment and the bank will invest. Hence, the models that

the bank chooses affect the outcome only when ω ∈ (φ1, φ2) (and potentially at the

corners φ1 and φ2).

The problem reduces to finding thresholds ωB and ωR, as in the previous section,

but instead of ω̄B and ω̄R(ωB), we now have ω̆B and ω̆R(ωB), which are defined as

follows: ω̆B is the lowest ωB ∈ [φ1, φ2] that satisfies

E[N(ω̃)|ω̃ ∈ [ωB, φ2)] ≥ 0, (19)

and ω̆R(ωB) is the lowest ωR ∈ [φ1, φ2] that satisfies

E[N(ω̃)|ω̃ ∈ [ωB, φ2) or ω̃ ∈ [ωR, ωB) and G(ω) ≥ 0] ≥ 0. (20)

An interesting question is how the optimal q changes when φ1 or φ2 change. We

illustrate for the case in which Ω0 = {ω1, ω2}, where ω1 > ω2 > ω̄B. We focus on the

more interesting case in which ρ(ω1, ω2) < q̂.16

Consider first the case φ2 = 1.

Proposition 4 If φ2 = 1 and Ω0 contains only two thresholds ω1 > ω2 > ω̄B, such

that q̂ > ρ(ω1, ω2), then there exists φ̂ ∈ (ω̄R(ω1), ω2) such that:

1. If φ1 < φ̂, the regulator sets q = 1, and the bank chooses ωB = ωR = ω2.

2. If φ1 ∈ (φ̂, ω2], the regulator set q = ρ(ω1, ω2), and the bank chooses ωB = ω1

and ωR < ω1.

3. If φ1 ∈ (ω2, ω1], the regulator sets q = min{1, ρ(ω1, φ1)}, which is increasing in

φ1, and the bank chooses ωB = ω1 and ωR < ω1.

4. If φ1 ∈ (ω1,
1
x
), any q is optimal, and the bank choice of models is irrelevant.

(When φ1 = φ̂, there are two equilibria: the equilibrium from Part 1 and the

equilibrium from Part 2.)

16If ρ(ω1, ω2) ≥ 1, the regulator chooses q = 1 and the bank chooses ωB = ωR = a2, independently
of the value of φ1. If ρ(ω1, ω2) ∈ (q̂, 1), the first case in the proposition below is absent, and the
second case holds for every φ1 < ω2.
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Proposition 4 illustrates two forces that push q in different directions. When the

public model is more informative (φ1 increases), the benefit from monitoring the bank

is reduced because the regulator can use the public model to ban investment. This can

lead to a lower q. However, it can also become easier to induce the bank to produce

information, because if the regulator uses the public model to ban investment, the

bank gains less from not producing information. This can lead to a higher q. The

first force is present in Part 2 in Proposition 4. The second force is present in Part 3.

Figure 2 illustrates. In particular, if φ1 < ω2, an increase in φ1 affects q because

it increases ω̆R(ω1), and hence, the regulator’s payoff u(ρ(ω1, ω2)). Since there is

no effect on u(1), the regulator switches from q = 1 to q = (ω1, ω2). If φ1 > ω2,

then ω̆B = φ1, and the set Ω0 becomes {φ1, ω1}. In this case, the regulator sets

q = ρ(φ1, ω1), which is increasing in φ1.

10
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Figure 2. Optimal q as a function of φ1

Finally, reducing φ2 has a similar effect to increasing φ1. Specifically, when φ2 is

suffi ciently large so that ω̆B < ω2, reducing φ2 reduces ω̆R(ω1), and hence leads to a

lower q. When φ2 is lower, so that ω̆B > ω2, reducing φ2 increases ω̆B, and hence,

leads to a higher q.

9 Applications

The insights from our model can be applied in other settings, such as when regulators

use bank internal risk models to set minimum capital requirements. Suppose capital

can be either high or low, and suppose that instead of the endogenous functions N(ω)
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and G(ω), we have some exogenous function, which represent the benefit from low

capital versus high capital to the regulator and to the bank, respectively. Our main

results continue to hold as long as G(ω) ≥ N(ω) for every ω ∈ Ω, and N(ω) is

increasing in ω. That is, the bank’s gain from having a lower amount of capital is

larger than the regulator’s gain, and the regulator’s gain is increasing in the state.

(N(ω) and G(ω) can take both positive values and negative values.) The insights

from our model can apply in this setting if we relabel “investment”to mean having

low capital requirements. So, allowing investment means that the regulator allows the

bank to have low capital, while banning investment means that the regulator requires

high capital. Our model suggests the following:

1. When existing rules (e.g., risk weights) measure risk imperfectly, the regulator

might gain from relying on bank internal models.

2. It might be optimal to allow the bank to produce two different models: one for

regulation and one for its own trading.

3. When existing rules measure risk more precisely, the bank produces more infor-

mation.

4. The relationship between the quality of existing rules and the optimal level of

monitoring is nonmonotone.

Our framework can also be applied in corporate governance. The optimality of

delegation of authority to the management has been studied in the context of infor-

mation transmission and incorporation of private information into decision making.

Our model provides new insights on the benefits of curbing boards’and shareholders’

power to create shareholder value.

10 Concluding remarks

We analyze a situation in which a regulator relies on information that a bank produces

to regulate the bank. We show that monitoring induces a tradeoff. By monitoring
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the bank, the regulator obtains information, which could be used to the regulator’s

advantage. However, a higher level of monitoring could induce the bank to produce

less information overall. Solving for the optimal level of monitoring, we show that, in

general, the optimal level of monitoring should be high when the bank’s private gain

from producing information is either suffi ciently high or suffi ciently low. We use this

result to derive comparative statics as to how the optimal level of monitoring varies

with respect to model parameter, such as the bank’s level of debt. We also analyze

the case in which some public information already exists. We show that when public

models are more precise, banks produce more information, but the regulator may end

up monitoring more.

One can think of our framework as a persuasion game in which the bank produces 

two signals. The first signal is used to persuade the regulator to delegate authority 

to the bank. The second signal is used to make better investment decisions, once au- 

thority is delegated. As is standard in the Bayesian persuasion literature, we assumed 

that the bank has full control in choosing the information technology, and, as such, 

the regulator cannot (or chooses not to) force the bank to choose a specific infor- 

mation technology. This could be due to the fact that the bank’s ability to produce 

information is private information.

Two assumptions are crucial for our results. First, the regulator can commit to

a prespecified monitoring intensity, but he cannot commit to contracts that bind

him to allow investment when it is ineffi cient to do so given his information ex post.

Second, we need a restriction on the information technology. In particular, the bank

cannot produce information partitions that pool together high and low states while

excluding the states in the middle. If we maintained only the first assumption but

not the second, the bank would not need to generate a second signal, and the optimal

signal could be obtained along the lines of Kamenica and Gentzkow (2011).

In practice, the regulator’s commitment to a monitoring technology often arises

via various mechanisms and rules that dictate what the regulator and banks can or

cannot do. Our findings lend support in favor of simple policy rules, as opposed to
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complicated recipes that try to get all available information from banks to fine tune 

regulation. Our main trade-off continues to hold in dynamic settings, or in settings 

where full commitment is not feasible, as long as the regulator cannot completely 

adjust the monitoring technology perfectly ex post.

Our framework can be extended in several directions. One possible path is to allow 

the regulator to choose whether to rely on banks’internal models. The main tradeoff 

we identified will continue to hold in such an extension. However, a richer strategy 

space will enable us to address other issues in bank regulation, such as the impact of 

using banks’models on banks’risk taking behavior. Another path is to allow the 

regulator to use banks’internal models to impose capital requirements coupled with 

restrictions on investment decisions or endogenous investment decisions by the bank. 

Such an extension will enable us to make more complete policy prescriptions.
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Appendix

Proof of Lemma 1. We first show that if G(ω) ≥ 0 then either (i) or (ii) holds.

To see that, note that if (i) does not hold, then N(ω) < 0. So, to satisfy G(ω) ≥ 0,

we must have D > v(ω). Hence, N(ω) + (1 − ω)[D − v(ω)] ≥ 0, which reduces to

v(ω) ≤ D + N(ω)
1−ω . Hence, (ii) holds. Next, we show that if (i) or (ii) holds, then

G(ω) ≥ 0. Clearly, if (i) holds, then N(ω) ≥ 0, and so, G(ω) ≥ 0. If (ii) holds, then

N(ω) + (1− ω)[D − v(ω)] ≥ 0, and so N(ω) + (1− ω) max[D − v(ω), 0] ≥ 0. Hence,

G(ω) ≥ 0.

Proof of Lemma 2. Consider an equilibrium in which the bank chooses models

PB and PR. The equilibrium outcome can be described by a pair of functions IB, IR :

Ω→ {0, 1}, where for γ ∈ {B,R}, Iγ(ω) = 1 if and only if the bank invests when the

state is ω and the regulator observes P γ(ω). We use inf P γ( 1
x
) to denote the highest

ω ∈ Ω that is less than or equal to every state in P γ( 1
x
). Similarly, supP γ( 1

x
) is the

lowest ω ∈ Ω that is greater than or equal to every state in P γ( 1
x
). Since PB is at

least as informative as PR, supPR( 1
x
) ≥ supPB( 1

x
) and inf PR( 1

x
) ≤ inf PB( 1

x
).

Because each partition element is convex, it follows for γ ∈ {B,R} that if ω >

supP γ( 1
x
) and ω′ ∈ P γ(ω), then ω′ > 1

x
. Similarly, if ω < inf P γ( 1

x
) and ω′ ∈ P γ(ω),

then ω′ < 1
x
. Hence, for γ ∈ {B,R}, when the regulator observes P γ(ω), then if

ω > supP γ( 1
x
), both the bank and regulator know that the project has positive

NPV, and if ω < inf P γ( 1
x
), both the bank and regulator know that the project has

negative NPV. Hence, the equilibrium outcome must be such that if ω > supP γ( 1
x
),

the regulator allows investment and the bank invests. In contrast, if ω < inf P γ( 1
x
),

investment does not take place, because if the bank invests, the regulator expects to

end up with a negative payoff and is better off banning investment.

Let

ωB =

{
inf PB( 1

x
) if IB( 1

x
) = 1

supPB( 1
x
) otherwise.

(A-1)

It follows that

IB(ω) =

{
1 if ω > ωB
0 if ω < ωB.

(A-2)
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Finally, suppose ω ∈ (inf PR( 1
x
), supPR( 1

x
)) and the regulator observes PR(ω).

Let ωR = inf PR( 1
x
) if the regulator allows investment, and ωR = supPR( 1

x
), oth-

erwise. If the regulator does not allow investment, we must have ωB = supPR( 1
x
)

(and, hence, ωR = ωB) because if ωB < supPR( 1
x
), the bank could increase its

payoff by choosing model P̂R = PB instead of PR, whereas if ωB > supPR( 1
x
),

we would obtain a contradiction ωB > supPR( 1
x
) ≥ supPB( 1

x
). Now suppose the

regulator allows investment. In this case, ωR ≤ ωB, and the bank invests if and

only if E[G(ω̃)|ω̃ ∈ PB(ω)] ≥ 0. So, if ω > ωB, the bank invests. If, instead,

ω ∈ (inf PR( 1
x
), ωB), the equilibrium outcome must be such that the bank invests

if G(ω) > 0 but not if G(ω) < 0. To see why, observe that if the bank does not

invest at some ω such that G(ω) > 0, then E[G(ω̃)|ω̃ ∈ PB(ω)] < 0, and there must

be an interval that contains ω, such that the bank does not invest in that interval.

Moreover, since G is continuous, that interval contains a positive measure of states

with G(ω̃) > 0. Similarly, if the bank invests at some ω such that G(ω) < 0, there

must be an interval that contains ω, such that the bank invests in that interval, and

that interval contains a positive measure of states with G(ω̃) < 0. Hence, if, to the

contrary, the equilibrium outcome is such that the bank invests if G(ω) < 0 or does

not invest if G(ω) > 0, we obtain a contradiction because the bank could increase its

payoff by choosing model P̂B instead of PB, where P̂B is defined as follows:

P̂B(ω) =

{
PB(ω) if ω > ωB
ω otherwise.

(A-3)

In particular, if the regulator observes PB(ω), investment will not take place when

ω < ωB, and the bank is not worse off by revealing the exact state ω < ωB. If,

however, the regulator does not observe PB(ω), the bank is better off learning the

exact state and investing according to its ideal investment rule.

Hence, we showed that

IR(ω) =

{
1 if ω > ωB or if ω ∈ (ωR, ωB) and G(ω) > 0
0 if ω < ωR or if ω ∈ (ωR, ωB) and G(ω) < 0

(A-4)

This completes the proof.
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Proof of Lemma 3. Consider an equilibrium in which the bank chooses models

PB and PR with thresholds ωB and ωR, as in Equations (4) and (5). To satisfy

Equation (6), we must have ωB ≥ ω̄B. In addition, as explained in the text, Equation

(11) must hold for every ω′B ∈ Ω such that ω′B ≥ ω̄B. Note that if the bank deviates

by choosing P̂B 6= PB, and the regulator observes only model PR, he continues to

believe that the other model is PB, and so he continues to allow investment when

ω ≥ ωR.

It remains to show the other direction. Suppose ωB ≥ ω̄B and Equation (11)

holds for every ω′B ∈ Ω such that ω′B ≥ ω̄B. We show that there is an equilibrium in

which the bank chooses models PB and PR with thresholds ωB and ωR = ω̄R(ωB). In

such an equilibrium, the bank’s payoff is V (ωB, ω̄R(ωB)). We need to show that the

bank cannot increase its payoff by choosing different models. Consider a deviation

in which the bank chooses models P̂B and P̂R, which do not necessarily take the

simple form in Equations (4) and (5). Assign out-of-equilibrium beliefs such that

when the regulator observes P̂R 6= PR, he believes that the other model is PB.

Hence, upon observing P̂R(ω), the regulator anticipates that the bank will invest if

and only if E[G(ω̃)|ω̃ ∈ PB(ω)] ≥ 0. Following the logic of Lemma 2, we can show

that ω̂B, ω̂R ∈ Ω exist such that the outcome of this deviation is as follows. When the

regulator observes model P̂B(ω), the bank invests if ω > ω̂B but not if ω < ω̂B. And

when the regulator observes models P̂R(ω), the regulator allows the bank to invest

when ω > ω̂R, and the bank does not invest when ω < ω̂R. For the regulator to allow

investment when ω > ω̂B, it must be the case that ω̂B ≥ ω̄B. For the regulator to

allow investment when ω > ω̂R, it must be the case that E[N(ω̃)|ω̃ > ωB or ω̃ ∈

[ω̂R, ωB) and G(ω̃) ≥ 0]. Hence, by the definition of ω̄R, we must have ω̂R ≥ ω̄R(ωB).

Consequently, the bank’s payoff from the deviation is at most V (ω̂B, ω̄R(ωB)). Hence,

from our starting assumption that Equation (11) holds for every ω′B ∈ Ω such that

ω′B ≥ ω̄B, the payoff from the deviation is at most V (ωB, ω̄R(ωB)). Hence, choosing

PB and PR is an equilibrium.

Proof of Lemma 4. Recall there exist a finite set of numbers b1 > a1 > ... >

35



bl > al, such that G(ω) ≥ 0 if and only if ω ∈ ∪li=1[ai, bi]. Hence, K = {a1, ..., al}.

We first show that for every ω /∈ Ω0 and ωR ∈ Ω, such that ω ≥ ω̄B ≥ ωR, there

exists ω′ ∈ Ω0, such that V (ω, ωR) < V (ω′, ωR). Consider ω /∈ Ω0 and ωR ∈ Ω,

such that ω ≥ ω̄B ≥ ωR. There exists i ∈ {1, ..., l} such that either ω ∈ (ai, bi] or

ω ∈ (bi+1, ai). If ω ∈ (ai, bi], let ω′ = max{ai, ω̄B}. If ω ∈ (bi+1, ai), let ω′ = ai. Then

ω′ ∈ Ω0 and V (ω, ωR) < V (ω′, ωR).

We use the observation above to prove Lemma 4. Suppose ωB ∈ Ω is an equilib-

rium threshold. From Lemma 3, ωB ≥ ω̄B and Equation (11) holds for every ω′B ∈ Ω

such that ω′B ≥ ω̄B. Hence, Equation (11) holds under the weaker condition ω′B ∈ Ω0.

Moreover, we must have ωB ∈ Ω0 because otherwise, the observation above would

imply that there exists ω′ ∈ Ω0, such that V (ωB, ω̄R(ωB)) < V (ω′, ω̄R(ωB)), which

contradicts Lemma 3.

Now suppose ωB ∈ Ω0 and Equation (11) holds for every ω′B ∈ Ω0. We show that

Equation (11) also holds for every ω′B /∈ Ω0 such that ω′B ≥ ω̄B, and hence, by Lemma

3, ωB is an equilibrium threshold. Suppose to the contrary that ω′B /∈ Ω0 exists such

that ω′B ≥ ω̄B and V (ωB, ω̄R(ωB)) < V (ω′B, ω̄R(ωB)). From the observation above,

ω′ ∈ Ω0 exists, such that V (ω′B, ω̄R(ωB)) < V (ω′, ω̄R(ωB)). Hence, V (ωB, ω̄R(ωB)) <

V (ω′, ω̄R(ωB)), which contradicts the starting assumption that Equation (11) holds

for every ω′B ∈ Ω0.

Lemma A-1 For any ωR ∈ Ω and ω, ω′ ∈ Ω0, such that ω > ω′, the following holds:

1. If q < ρ(ω, ω′), then V (ω, ωR) > V (ω′, ωR).

2. If q = ρ(ω, ω′), then V (ω, ωR) = V (ω′, ωR).

3. If q > ρ(ω, ω′), then V (ω, ωR) < V (ω′, ωR).

Proof of Lemma A-1. The proof applies to a more general case in which there

is a cost z ≥ 0, as in Section 7. Consider ωR ∈ Ω and ω, ω′ ∈ Ω0, such that ω > ω′.
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Observe that V (ω, ωR)− z > V (ω′, ωR) is equivalent to

(1− q)
∫ ω

ωR

1{ω:G(ω)>0}G(ω)dF (ω) +

∫ 1

ω

G(ω)dF (ω)− z (A-5)

> (1− q)
∫ ω′

ωR

1{ω:G(ω)>0}G(ω)dF (ω) +

∫ 1

ω′
G(ω)dF (ω).

After rearranging terms, (A-5) reduces to

(1− q)
∫ ω

ω′
1{ω:G(ω)>0}G(ω)dF (ω) >

∫ ω

ω′
G(ω)dF (ω) + z, (A-6)

which reduces to∫ ω

ω′
1{ω:G(ω)≥0}G(ω)dF (ω)−

∫ ω

ω′
G(ω)dF (ω)−z > q

∫ ω

ω′
1{ω:G(ω)>0}G(ω)dF (ω). (A-7)

Since ω, ω′ ∈ Ω0 and ω > ω′, the integral on the right-hand-side of (A-7) is positive.

Hence, (A-7) reduces to

q <
−
∫ ω
ω′ 1{ω:G(ω)<0}G(ω)dF (ω)− z∫ ω
ω′ 1{ω:G(ω)>0}G(ω)dF (ω)

=
|
∫ ω
ω′ 1{ω:G(ω)<0}G(ω)dF (ω)| − z∫ ω
ω′ 1{ω:G(ω)>0}G(ω)dF (ω)

. (A-8)

Hence, we proved part 1. Parts 2 and 3 follow in a similar fashion.

Proof of Proposition 1. Since Ω0 contains only two thresholds ω1 > ω2, we

know from Lemma 4 that for ωB to be an equilibrium threshold, we must have

ωB ∈ {ω1, ω2}. To see why part 1 is true, suppose q < ρ(ω1, ω2). From Lemma

A-1, V (ω1, ω̄R(ω1)) > V (ω2, ω̄R(ω1)) and V (ω1, ω̄R(ω2)) > V (ω2, ω̄R(ω2)). Hence, by

Lemma 4, ω1 is an equilibrium threshold, whereas ω2 is not an equilibrium threshold.

Parts 2 and 3 follow similarly.

Proof of Theorem 1. We construct the step function ωB(q) as follows. Let

q̄0 = 0, δ1 = ω1, and for integers i ≥ 1, define recursively:

q̄i =

{
min{1,minω∈Ω0∩[0,δi) ρ(δi, ω)} if δi > ωn
1 otherwise.

(A-9)

δi+1 =

{
min{ω ∈ Ω0 ∩ [0, δi) : ρ(δi, ω) = q̄i} if q̄i < 1
δi otherwise.

(A-10)

Let m = min{i : q̄i = 1}.
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From the definition of m, q̄i < 1 for every i < m. Hence, from Equation (A-10),

δ1 > δ2 > ... > δm and

q̄i = ρ(δi, δi+1) for every i < m. (A-11)

In addition, from Equation (A-9), δi > ωn for every i < m.

We show that ωB(0) = δ1, and that for i ∈ {1, ...,m}, ωB(q) = δi if q ∈ (q̄i−1, q̄i].

The proof is by induction. For i = 1, we know from the definition of q̄1 that

q̄1 ≤ minω∈Ω0∩[0,ω1) ρ(ω1, ω). Hence, when q ≤ q̄1, we know from Lemma A-1 that

V (ω1, ω̄R(ω1)) ≥ V (ω, ω̄R(ω1)) for every ω ∈ Ω0 ∩ [0, ω1), and so by Lemma 4, ω1 is

an equilibrium threshold. Since in case of multiple equilibria, we focus on the one

with the highest threshold, it follows that ωB(q) = ω1 when q ∈ [0, q̄1].

Now suppose i < m and ωB(q) = δi if q ∈ (q̄i−1, q̄i]. We show that ωB(q) = δi+1 if

q ∈ (q̄i, q̄i+1]. There are a few steps:

1. Form Lemma A-1, it follows that if V (ωB, ω̄R(ωB)) ≥ V (ω′B, ω̄R(ωB)), then

V (ωB, ωR) ≥ V (ω′B, ωR) for every ωR ∈ Ω. Hence, we can rewrite Lemma 4 as follows:

ωB ∈ Ω is an equilibrium threshold if and only if ωB ∈ Ω0 and V (ωB, ωR) ≥ V (ω′, ωR)

for every ω′ ∈ Ω0 and ωR ∈ Ω.

2. We show that if q = q̄i, then V (δi+1, ωR) ≥ V (ω′, ωR) for every ω′ ∈ Ω0 and

ωR ∈ Ω. In other words, if q = q̄i, then δi+1 weakly dominates any other threshold

candidate. This follows from the following two observations. First, if q = q̄i, we know

from the induction assumption that δi is an equilibrium threshold, and so, from Step

1, V (δi, ωR) ≥ V (ω′, ωR) for every ω′ ∈ Ω0 and ωR ∈ Ω. Second, since q̄i = ρ(δi, δi+1),

it follows from Lemma A-1 that V (δi+1, ωR) = V (δi, ωR) for every ωR ∈ Ω.

3. Now we show that if q > q̄i, then δi+1 strictly dominates any other threshold

candidate that is greater than δi+1. It follows from Step 2 and Lemma A-1 that

q̄i ≥ ρ(ω′, δi+1) for every ω′ ∈ Ω0 ∩ (δi+1, 1]. It then follows from A-1 that if q > q̄i,

then V (δi+1, ωR) > V (ω′, ωR) for every ω′ ∈ Ω0 ∩ (δi+1, 1] and ωR ∈ Ω.

4. It also follows from Step 2 and Lemma A-1 that q̄i ≤ ρ(δi+1, ω) for every

ω ∈ Ω0 ∩ [0, δi+i).
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5. If δi+1 = ωn, then q̄i+1 = 1, and from Steps 1 and 3, δi+1 is a unique equilibrium

when q ∈ (q̄i, q̄i+1]. So, the proof is complete.

6. If δi+1 > ωn, then q̄i+1 ≤ minω∈Ω0∩[0,δj+1) ρ(δi+1, ω). Hence, from Lemma A-1,

if q ≤ q̄i+1, then V (δi+1, ωR) ≥ V (ω′, ωR) for every ω′ ∈ Ω0 ∩ [0, δi+1) and ωR ∈ Ω. In

other words, δi+1 weakly dominates any other threshold candidate that is smaller than

δi+1. Note that if q̄i+1 6= 1, then q̄i+1 = ρ(δi+1, δi+2) ≥ q̄i, where the last inequality

follows from Step 4.

7. It follows from Steps 1, 3, and 6, that if q ∈ (q̄i, q̄i+1], δi+1 is an equilibrium

and any other ωB ∈ Ω0 ∩ (δi+1, 1] is not an equilibrium. Since in case of multiple

equilibria we focus on the one with the highest threshold, it follows that ωB(q) = δi+1

if q ∈ (q̄i, q̄i+1].

Proof of Lemma 5. For use below, denote q̄m = 1. From Theorem 1, ωB(q̄1) =

ωB(0), and for every i ∈ {1, ...,m}, ωB(q̄i) = ωB(q) if q ∈ (q̄i−1, q̄i). In addition,

ωB(q̄i) > ωB(q̄i−1). Also note that since G(ω) ≥ 0 for every ω ≥ 1
x
(Lemma 1),

then ωB(q̄1) ≤ 1
x
, and so N(ω) < 0 for every ω < ωB(q̄1). Hence, if m ≥ 2 and

q ≤ q̄m−1, then ωB(q) > ωB(1) ≥ ω̄B, and so, the first integral in (14) satisfies∫ ωB(q)

ω̄R(ωB(q))
1{ω:G(ω)≥0}N(ω)dF (ω) ≤

∫ ωB(q)

ωB(1)
1{ω:G(ω)≥0}N(ω)dF (ω) < 0. Hence, Part 1

follows. If m = 1 or if m ≥ 2 and q ∈ (q̄m−1, 1), the first integral in (14) is negative

only if ωB(1) > ω̄B and G(ω) > 0 for some ω < ωB(1). Otherwise, that integral

equals zero. Hence, the rest of the lemma follows.

Proof of Proposition 2. Suppose Ω0 = {ω1, ω2}, where ω1 > ω2 > ω̄B. Then

in Theorem 1, δ1 = ω1 and q̄1 = min{1, ρ(ω1, ω2)}. If ρ(ω1, ω2) ≥ 1, then m = 1, and

by Lemma 5, q = 1 is uniquely optimal. If ρ(ω1, ω2) < 1, then δ2 = ω2, q̄2 = 1, and

m = 2. So from Lemma 5, there is a solution in {ρ(ω1, ω2), 1}. If u(1) > u(ρ(ω1, ω2)),

q = 1 is optimal. This condition reduces to ρ(ω1, ω2) < q̂. (The proof of Theorem

2 contains more details.) Since ρ(ω1, ω2) ≥ 0, the last condition can hold only if

q̂ > 0. In turn, q̂ > 0 holds only if |
∫ ω2
ω̄R(ω1)

1{ω:G(ω)≥0}N(ω)dF (ω)|, which holds only

if G(ω) > 0 for some ω < ω2. Hence, by Lemma 5, q = 1 is uniquely optimal when

ρ(ω1, ω2) < q̂. If ρ(ω1, ω2) ∈ (q̂, 1), then u(1) < u(ρ(ω1, ω2)), and by Lemma 5,
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q = ρ(ω1, ω2) is uniquely optimal. Combining the results above, we obtain Parts 1

and 2. Part 3 follows easily.

Proof of Theorem 2. The result for Ω0 = {ω1} follows immediately from

Lemma 5. Now suppose Ω0 contains n ≥ 2 thresholds. Then, in Theorem 1, δ1 = ω1

and q̄1 = min{1,minω∈Ω0∩[0,δi) ρ(δi, ω)}. If minω∈Ω0:ω<ω1 ρ(ω1, ω) ≥ 1, then m = 1,

and by Lemma 5, q = 1 is uniquely optimal. The rest of this proof focuses on the

case m = 2.

From Lemma 5, q = 1 is optimal if and only if u(1) ≥ u(q̄i) for every i ∈

{1, ...,m − 1}. So, to prove the first part, we need to show that for every i ∈

{1, ...,m − 1}, u(1) ≥ u(q̄i) reduces to Equation (17). The details are as follows.

Observe that u(1) =
∫ 1

δm
N(ω)dF (ω), and for i ∈ {1, ...,m − 1}, u(q̄i) = (1 −

q̄i)
∫ δi
ω̄R(δi)

1{ω:G(ω)≥0}N(ω)dF (ω) +
∫ 1

δi
N(ω)dF (ω). Hence, after rearranging terms,

u(1) ≥ u(q̄i) reduces to∫ δi

δm

N(ω)dF (ω) ≥ (1− q̄i)
∫ δi

ω̄R(δi)

1{ω:G(ω)≥0}N(ω)dF (ω). (A-12)

Since δm < δm−1 < ... < δ1 ≤ 1
x
, it follows that N(ω) < 0 when ω < δi. Hence,

the integrals on both sides of Equation (A-12) are negative. Hence, Equation (A-12)

reduces to

1− q̄i ≥
∫ δi
δm
N(ω)dF (ω)∫ δi

ω̄R(δi)
1{ω:G(ω)≥0}N(ω)dF (ω)

=
|
∫ δi
δm
N(ω)dF (ω)|

|
∫ δi
ω̄R(δi)

1{ω:G(ω)≥0}N(ω)dF (ω)|
, (A-13)

or equivalently,

q̄i ≤
|
∫ δi
ω̄R(δi)

1{ω:G(ω)≥0}N(ω)dF (ω)| − |
∫ δi
δm
N(ω)dF (ω)|

|
∫ δi
ω̄R(δi)

1{ω:G(ω)≥0}N(ω)dF (ω)|
(A-14)

=
|
∫ δm
ω̄R(δi)

1{ω:G(ω)≥0}N(ω)dF (ω)| − |
∫ δi
δm

1{ω:G(ω)<0}N(ω)dF (ω)|

|
∫ δm
ω̄R(δi)

1{ω:G(ω)≥0}N(ω)dF (ω)|+ |
∫ δi
δm

1{ω:G(ω)≥0}N(ω)dF (ω)|
.

Hence, we showed that u(1) ≥ u(q̄i) holds if and only if Equation (17) holds, which

completes the proof of Part 1.

To show the second part, observe that for every i ∈ {1, ...,m − 1}, u(1) > u(q̄i)

if and only if Equation (17) holds with strict inequalities. Hence, from Lemma 5, it
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remains to show thatG(ω) > 0 for some ω < δm. This follows because if Equation (17)

holds with strict inequalities when i = m−1, then |
∫ δm
ω̄R(δm−1)

1{ω:G(ω)≥0}N(ω)dF (ω)| >

0, which implies that G(ω) > 0 for some ω < δm.

Proof of Proposition 3. The logic from Section 6.1 applies for the case under

consideration, but for Proposition 1 to hold, we must have ζ(z) instead of ρ(ω1, ω2).

This follows from the proof of Lemma A-1. Observe that ζ(z) is decreasing in z. Let

z1 be the unique z that satisfies ζ(z) = 1, and let z2 be the unique z that satisfies∫ 1

ω2

N(ω)dF (ω) = (1− ζ(z))

∫ ω1

ω̄R(ω1)

1{ω:G(ω)≥0}N(ω)dF (ω) +

∫ 1

ω1

N(ω)dF (ω)− z.

(A-15)

A unique z2 exists because
∫ ω1
ω̄R(ω1)

1{ω:G(ω)≥0}N(ω)dF (ω) < 0, and so the right-hand-

side in Equation (A-15) is decreasing in z. Moreover, z2 > z1. To see that, it is

suffi cient to show that when ζ(z) = 1, the right-hand-side in Equation (A-15) is

greater than the left-hand side. This follows because from Equation (18), ζ(z) = 1

implies that

−z > −|
∫ ω1

ω2

1{ω:G(ω)<0}G(ω)dF (ω)| =
∫ ω1

ω2

1{ω:G(ω)<0}G(ω)dF (ω)

≥
∫ ω1

ω2

1{ω:G(ω)<0}N(ω)dF (ω) ≥
∫ ω1

ω2

N(ω)dF (ω). (A-16)

If z ≤ z1, then ζ(z) ≥ 1, and so ωB(q) = ω1 for every q ∈ [0, 1]. In this case,

the regulator’s payoff is u(q) − z, which is increasing in q. Hence, q = 1 is uniquely

optimal.

If z > z1, then ζ(z) < 1, and so,

ωB(q) =

{
ω1 if q ≤ ζ(z)
ω2 if q > ζ(z).

(A-17)

In this case, the regulator’s payoff is u(q) − z1{ωB(q)=ω1}. Hence, the left-hand side

in Equation (A-15) is the regulator’s payoff if q = 1, and the right-hand side is the

regulator’s payoff if q = ζ(z). Hence, when z = z2, the regulator is indifferent between

choosing q = 1 and choosing q = ζ(z). If z ∈ (z1, z2), choosing q = ζ(z) is preferred to

choosing q = 1. Similarly, if z > z2, choosing q = 1 is preferred to choosing q = ζ(z).
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Finally, from Lemma A-1 and the assumption that ω2 > ω̄B and G(ω) > 0 for some

ω < ω2, it follows that any q /∈ {ζ(z), 1} is suboptimal.

Proof of Proposition 4.

Parts 1 and 2. If φ1 ≤ ω2, then

ωB(q) =

{
ω1 if q ≤ ρ(ω1, ω2)
ω2 otherwise

(A-18)

and

u(q) = (1− q)
∫ ωB(q)

max{φ1,ω̄R(ωB(q))}
1{ω:G(ω)≥0}N(ω)dF (ω) +

∫ 1

ωB(q)

N(ω)dF (ω). (A-19)

From Proposition 2, we know that when φ1 = 0, the regulator sets q = 1. Since

q̂ > ρ(ω1, ω2) > 0 and ω2 > ω̄B, we know that G(ω) > 0 for some ω < ω̄B. In

addition, G(ω̄B) < 0. Let ω′2 = max{ω < ω̄B : G(ω) ≥ 0}. When φ1 = ω′2, it is

optimal to set q = ρ(ω1, ω2) because

u(ρ(ω1, ω2)) = (1− q)
∫ ω1

ω2

1{ω:G(ω)≥0}N(ω)dF (ω) +

∫ 1

ω1

N(ω)dF (ω)

>

∫ 1

ω2

N(ω)dF (ω) = u(1). (A-20)

Since u(q) is continuous and increasing in φ, and u(1) does not depend on φ1, there

exists φ̂ ∈ (ω̄R(ω1), ω′2) such that when when φ1 < φ̂, the regulator sets q = 1, and

when φ1 ∈ (φ̂, ω′2), the regulator sets q = ρ(ω1, ω2).

Part 3. Let ω′1 = max{ω < ω1 : G(ω) ≥ 0}. If φ1 ∈ (ω2, ω
′
1), the set Ω0 changes

to {φ1, ω1}. Hence,

ωB(q) =

{
ω1 if q ≤ ρ(ω1, φ1)
φ1 otherwise

(A-21)

and

u(q) = (1− q)
∫ ωB(q)

φ1

1{ω:G(ω)≥0}N(ω)dF (ω) +

∫ 1

ωB(q)

N(ω)dF (ω). (A-22)

Since u(ρ(ω1, φ1)) > u(1), it is (uniquely) optimal to choose q = ρ(ω1, φ1). The bank

responds by choosing ωB = ω1 and ωR = φ1.

Part 4. If φ1 > ω′1 the set Ω0 includes only one state: max{ω1, φ1}. Hence,

ωB(q) = max{ω1, φ1}, for every q ∈ [0, 1]. In this case, the first integral in Equation

(A-22) equals zero, and any q is optimal.
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