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Abstract

We incorporate a search-theoretic model of imperfect competition into an otherwise standard model 
of asymmetric information with unrestricted contracts. We develop a methodology that allows for 
a sharp analytical characterization of the unique equilibrium and then use this characterization to 
explore the interaction between adverse selection, screening, and imperfect competition. On the pos-
itive side, we show how the structure of equilibrium contracts—and, hence, the relationship 
between an agent’s type, the quantity he trades, and the corresponding price—is jointly determined 
by the severity of adverse selection and the concentration of market power. This suggests that 
quantifying the effects of adverse selection requires controlling for the market structure. On the 
normative side, we show that increasing competition and reducing informational asymmetries can 
be detrimental to welfare. This suggests that recent attempts to increase competition and reduce 
opacity in markets that suffer from adverse selection could potentially have negative, unforeseen 
consequences.
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1 Introduction

Many large and important markets suffer from adverse selection, including the markets for insurance,

credit, and certain financial securities. There is mounting evidence that many of these markets also

feature some degree of imperfect competition.1 And yet, perhaps surprisingly, the effect of imperfect com-

petition on prices, allocations, and welfare in markets with adverse selection remains an open question.

Answering this question is important for several reasons. For one, many empirical studies attempt

to quantify the effects of adverse selection in the markets mentioned above.2 A natural question is to

what extent these estimates—and the conclusions that follow—are sensitive to the assumptions being im-

posed on the market structure. There has also been a recent push by policymakers to make several of the

markets mentioned above more competitive and less opaque.3 Again, a crucial but seemingly underex-

plored question is whether these attempts to promote competition and reduce information asymmetries

are necessarily welfare-improving.

Unfortunately, the ability to answer these questions has been constrained by a shortage of appro-

priate theoretical frameworks.4 A key challenge is to incorporate nonlinear pricing schedules—which

are routinely used to screen different types of agents—into a model with asymmetric information and

imperfect competition. This paper delivers such a model: we develop a novel, tractable framework of

adverse selection, screening, and imperfect competition.

The key innovation is to introduce the search-theoretic model of imperfect competition developed by

Burdett and Judd (1983) into an otherwise standard model with asymmetric information and nonlinear

contracts. Within the context of this environment, we provide a full analytical characterization of the

unique equilibrium and then use this characterization to study both the positive and normative issues

highlighted above.

First, we show how the structure of equilibrium contracts—and, hence, the relationship between an

agent’s type, the quantity that he trades, and the corresponding price—are jointly determined by the

1For evidence of market power in insurance markets, see Brown and Goolsbee (2002), Dafny (2010), and Cabral et al.
(2014); Einav and Levin (2015) provide additional references, along with a general discussion. For evidence of market power
in various credit markets, see, e.g., Ausubel (1991), Calem and Mester (1995), Petersen and Rajan (1994), Scharfstein and
Sunderam (2013), and Crawford et al. (2015). In over-the-counter financial markets, a variety of data suggests that dealers
extract significant rents; indeed, this finding is hard-wired into the workhorse models of this market, such as Duffie et al.
(2005) and Lagos and Rocheteau (2009).

2See the seminal paper by Chiappori and Salanie (2000), and Einav et al. (2010a) for a comprehensive survey.
3Increasing competition and transparency in health insurance markets is a cornerstone of the Affordable Care Act, while

the Dodd-Frank legislation addresses similar issues in over-the-counter financial markets. In credit markets, on the other hand,
legislation has recently focused on restricting how much information lenders can demand or use from borrowers.

4As Chiappori et al. (2006) put it, “there is a crying need for [a model] devoted to the interaction between imperfect
competition and adverse selection.”
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severity of the adverse selection problem and the degree of imperfect competition. In particular, we

show that equilibrium offers separate different types of agents in markets where competition is relatively

intense or adverse selection is relatively severe, while they typically pool different types of agents in

markets where principals have sufficient market power and adverse selection is sufficiently mild. Second,

we explore how ex ante welfare responds to changes in the degree of competition and the severity

of adverse selection. We show that increasing competition or reducing informational asymmetries is

only welfare-improving in markets in which both market power is sufficiently concentrated and adverse

selection is sufficiently severe.

Before explaining these results in greater detail, it is helpful to lay out the basic building blocks of the

model. The agents in our model, whom we call “sellers,” are endowed with a perfectly divisible good of

either low or high quality; the quality of the good is the seller’s private information. The principals, whom

we call “buyers,” offer menus containing price-quantity combinations to potentially screen high and low-

quality sellers.5 Sellers can accept at most one contract, i.e., contracts are exclusive. To this otherwise

canonical model of trade under asymmetric information, we introduce imperfect competition by endowing

the buyers with some degree of market power. In particular, we assume that each seller receives offers

from two buyers with probability π and from only one buyer with probability 1 − π. Importantly, when

buyers make an offer, they are unsure whether the seller who receives it will receive an additional offer

as well. This formulation allows us to capture the perfectly competitive case (a la Rothschild and Stiglitz

(1976)) by setting π = 1, the monopsony case (a la Stiglitz (1977)) by setting π = 0, and everything in

between.

For the general case of imperfect competition, with π ∈ (0, 1), the equilibrium involves buyers mixing

over menus according to a nondegenerate distribution function.6 Since each menu is comprised of two

price-quantity pairs (one for each type), this implies that the main equilibrium object is a probability

distribution over four-dimensional offers. A key contribution of our paper is developing a methodology

that allows for a complete, yet tractable, characterization of this complicated equilibrium object.

We begin by showing that any menu can be summarized by the indirect utilities it offers to sellers

of each type. This follows from two very general properties of equilibrium menus: first, the incentive

5The use of the labels “buyers” and “sellers” is merely for concreteness and corresponds most clearly with an asset market
interpretation. These monikers can simply be switched in the context of an insurance market, so that the “buyers” of insurance
are the agents with private information and the “sellers” of insurance are the principals.

6Mixing is to be expected for at least two reasons. First, this is a robust feature of nearly all models in which buyers are 
both monopsonists and Bertrand competitors with some probability, even without adverse selection or non-linear contracts. 
Second, even in perfectly competitive markets, it is well known that pure strategy equilibria may not exist in an environment 
with both adverse selection and nonlinear contracts.
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constraint of the low-quality seller always binds; and second, the quantity traded by low-quality sellers

is never distorted. These properties reduce the dimensionality of the distribution from four to two. The

next, and most important, step is to establish an additional property that must hold in any equilibrium:

all menus offered in equilibrium are ranked in exactly the same way by both low- and high-quality

sellers. This property, which we call “strictly rank-preserving,” simplifies the characterization consider-

ably, as it implies that all equilibrium menus can be ranked along a single dimension. The equilibrium,

then, can be described by a distribution function over a unidimensional variable—say, the indirect utility

offered to low-quality sellers—along with a strictly monotonic function mapping this variable to the

indirect utility offered to the high-quality seller.

This property allows us to provide a full analytical characterization of all equilibrium objects of 

interest and to establish that the equilibrium is unique. Interestingly, our approach not only avoids the 

well-known problems with existence of equilibria in models of adverse selection and screening but also 

requires no assumptions on off-path beliefs to get uniqueness. We then exploit this characterization to 

explore the implications—both positive and normative—of imperfect competition in markets suffering 

from adverse selection.

On the positive side, we find that the structure of menus offered in equilibrium depends on both

the degree of competition, captured by π, and the severity of the adverse selection problem, which is

succinctly summarized by a single statistic that is largest (i.e., adverse selection is most severe) when:

(i) the fraction of low-quality sellers is large; (ii) the potential surplus from trading with high-quality

sellers is small; and (iii) the information cost of separating the two types of sellers, as captured by the

difference in their reservation values, is large. Given these summary statistics, we show that separating

menus are more prevalent when competition is relatively strong or when adverse selection is relatively

severe. Pooling menus, on the other hand, are more prevalent when competition is relatively weak and

adverse selection is relatively mild. Interestingly, holding constant the severity of the adverse selection

problem, the equilibrium may involve all pooling menus, all separating menus, or a mixture of the two,

depending on the degree of competition. This finding suggests that attempts to infer the severity of

adverse selection from the distribution of contracts that are traded should, indeed, take into account the

extent to which the market is competitive.

Next, we examine our model’s implications for welfare, defined as the objective of a utilitarian social

planner. In our context, this objective maps one-for-one to the expected quantity of high-quality assets

traded. We first study the relationship between welfare and the degree of competition. Our main finding
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is that competition can worsen the distortions related to asymmetric information and, therefore, can be 

detrimental to welfare. When adverse selection is mild, these negative effects are particularly stark: 

welfare is monotonically decreasing in π, with monopsony (π = 0) achieving the highest possible level of 

welfare. When adverse selection is severe, however, welfare is inverse U-shaped in π (i.e., an interior level 

of competition maximizes welfare).

To understand the hump-shape in welfare under severe adverse selection, note that an increase in

competition induces buyers to allocate more of the surplus to sellers (of both types) in an attempt to

retain market share. All else equal, increasing the utility offered to low-quality sellers is good for welfare:

by relaxing the low-quality seller’s incentive compatibility constraint, the buyer is able to exchange a

larger quantity with high-quality sellers. However, ceteris paribus, increasing the utility offered to high-

quality sellers is bad for welfare: it tightens the incentive constraint and forces buyers to trade less with

high-quality sellers. Hence, the net effect of an increase in competition on trade of high-quality assets

depends on whether the share of the surplus offered to high-quality sellers rises faster or slower than

that offered to low-quality sellers.

When competition is low, buyers earn a disproportionate fraction of their profits from low-quality

sellers. Therefore, when buyers have lots of market power, an increase in competition leads to a faster

increase in the utility offered to low-quality sellers, since buyers care (relatively) more about retain-

ing these sellers. As a result, trade with high-quality sellers and welfare rise with competition. The

opposite happens when competition is sufficiently high and profits come disproportionately from high-

quality sellers. In this case, increases in competition induce a faster increase in the offers to high-quality

sellers and, therefore, a decrease in expected trade and welfare. These results suggest that promoting

competition—or instituting policies that have similar effects, such as price supports or minimum quan-

tity restrictions—can lead to adverse effects on welfare in markets that are sufficiently competitive and

face severe adverse selection.

Next, we study the welfare effects of providing buyers with more information—specifically, a noisy

signal—about the seller’s type. As in the case of increasing competition, the welfare effects of this

perturbation depend on the severity of the two main frictions in the model: imperfect competition and

adverse selection. When adverse selection is relatively mild or competition relatively strong, reducing

informational asymmetries can actually be detrimental to welfare. The opposite is true when adverse

selection and trading frictions are relatively severe. In sum, these normative results highlight how

the interaction between these two frictions can have surprising implications for changes in policy (or
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technological innovations), underscoring the need for a theoretical framework such as ours.

Finally, we note that our baseline model was designed to be as simple as possible in order to focus

on the novel interactions between adverse selection and imperfect competition. In Sections 6 and 7, we

analyze a number of relevant extensions and variants that demonstrate the robustness of our results,

and also make our framework more amenable to applied work. First, we show how our analysis can be

extended to a setting with an arbitrary number of types and contracts. Second, we relax our assumption

of linear utility to analyze the canonical model of insurance under private information. Third, we allow

the degree of competition to differ across sellers of different quality. Lastly, we show how to incorporate

additional dimensions of heterogeneity, including horizontal and vertical differentiation.

Literature Review. Our paper contributes to an extensive body of literature on adverse selection. Our

focus on contracts as screening devices puts us in the tradition of Rothschild and Stiglitz (1976), in

contrast to the branch of the literature that restricts attention to single price contracts, as in the original

model of Akerlof (1970). Most of the literature that studies adverse selection and screening has either

assumed a monopolistic or perfectly competitive market structure.7

The main novelty of our analysis is to synthesize a standard model of adverse selection and unre-

stricted contracts with the search-theoretic model of imperfect competition developed by Butters (1977),

Varian (1980), and, in particular, Burdett and Judd (1983). While this model of imperfect competition

has been used extensively in both theoretical and empirical work,8 to the best of our knowledge none of

these papers address adverse selection and screening.9 A recent paper by Garrett et al. (2014) exploits

the Burdett and Judd (1983) model in an environment with screening contracts and asymmetric infor-

mation, but the asymmetric information is over the agents’ private values. This key difference implies

that the role of screening—and how it interacts with imperfect competition—is ultimately very different

in our paper and theirs.10

More closely related to our work is the literature that studies adverse selection and nonlinear con-

tracts in an environment with competitive search—most notably the influential paper by Guerrieri et al.

7For recent contributions to this literature that assume perfectly competitive markets, see, e.g., Bisin and Gottardi (2006),
Chari et al. (2014), and Azevedo and Gottlieb (2015).

8For recent examples, see, e.g., Sorensen (2000) and Kaplan and Menzio (2015).
9Carrillo-Tudela and Kaas (2011) analyze a related labor market setting with adverse selection using the on-the-job search

model of Burdett and Mortensen (1998), but their focus is quite different from ours.
10In particular, with private values, screening is useful only for rent extraction. Competition reduces (and ultimately, elimi-

nates) these rents and, along with them, incentives to screen. In contrast, with common values, screening plays a central role
in mitigating the adverse selection problem. As a result, it disappears only when that problem is sufficiently mild; increased
competition serves to strengthen incentives to separate. This interaction is also the source of non-monotonic effects on welfare
from increased competition. With private values, on the other hand, welfare unambiguously increases with competition.
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(2010).11 In that paper, principals post contracts and match bilaterally with agents who direct their

search efforts toward specific contracts. A matching technology determines the probability that each

agent trades (or is rationed) in equilibrium, as a function of the relative measures of principals offering

a specific contract and agents searching for it.

As in our paper, Guerrieri et al. (2010) present an explicit model of trade without placing any re-

strictions on contracts, beyond those arising from the primitive frictions. There are, however, several

important differences. The first relates to the role of search frictions. In our analysis, the focus is on

market power—the interaction between the resulting distortions and the underlying adverse selection

problem is the central focus of this paper. Guerrieri et al. (2010) and others, on the other hand, focus on

the role of search frictions in providing incentives (through the probability of trade) and not on market

power per se. Second, depending on parameters, our equilibrium menus can be pooling, separating

or a combination of both; the approach in Guerrieri et al. (2010), on the other hand, always leads to

separating equilibria. In this sense, our approach has the potential to speak to a richer set of observed

outcomes. Finally, we obtain a unique equilibrium without additional assumptions or refinements,

whereas uniqueness in Guerrieri et al. (2010) relies on a restriction on off-equilibrium beliefs.12

An alternative approach to modeling imperfect competition is through product differentiation, as in

Villas-Boas and Schmidt-Mohr (1999) and, more recently, Benabou and Tirole (2016), Veiga and Weyl

(2012), Mahoney and Weyl (2014), and Townsend and Zhorin (2014). Identical contracts offered by vari-

ous principals are valued differently by agents because of an orthogonal attribute, which is interpreted

as “distance” in a Hotelling interpretation or “taste” in a random utility, discrete choice framework.

This additional dimension of heterogeneity is the source of market power, and changes in competition

are induced by varying the importance of this alternative attribute (i.e., by altering preferences).We

take a different approach to modeling (and varying) competition, which holds constant preferences and,

therefore, the potential social surplus. It is also worth pointing out a few key differences in substantive 

results, particularly about the desirability of competition. In Benabou and Tirole (2016), a tradeoff from

increased competition arises not because of adverse selection per se, but from the need to provide in-

centives to allocate effort between multiple, imperfectly observable or contractible tasks. In fact, without

multitasking, competition improves welfare even with asymmetric information. This is also the case in

11Other papers studying adverse selection with competitive search include Michelacci and Suarez (2006), Kim (2012), Chang
(2012), and Guerrieri and Shimer (2014a,b).

12Still other related literature studies adverse selection in dynamic models with search frictions, where separation is 
achieved by having agents of different types trade at different points in time. See, e.g., Inderst (2005), Moreno and Wooders 
(2010), Camargo and Lester (2014), and the references therein. In all of these papers, agents are assumed to trade linear 
contracts.
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Mahoney and Weyl (2014), where attention is restricted to single-price contracts. Veiga and Weyl (2012)

also restrict attention to a single contract, but with endogenous “quality,” and find that it is maximized

under monopoly. In our setting, depending on parameters, competition can be beneficial or harmful.

Though there are a number of differences between their setup and ours (e.g., multidimensional hetero-

geneity, contract space, equilibrium concept), which precludes a direct comparison, we interpret their

results as providing a distinct but complementary insight about the interaction between competition and

adverse selection.

The rest of the paper is organized as follows. Section 2 describes our model. Section 3 proves key 

properties of the equilibrium, followed by its construction in Section 4. Section 5 contains implications 

for welfare and policy. Sections 6 extends the analysis to multiple types, and Section 7 performs a 

number of robustness exercises. Section 8 concludes, and all proofs can be found in the Appendix.

2 Model

Environment. We consider an economy populated by a measure of sellers and a measure of buyers.

Each seller is endowed with a single unit of a perfectly divisible good. A fraction µl ∈ (0, 1) of sellers

possess a low (l) quality good, while the remaining fraction µh = 1−µl possess a high (h) quality good.

Buyers and sellers derive utility vi and ci, respectively, from consuming each unit of a quality i ∈ {l,h}

good, with vl < vh and cl < ch. We assume that

vi > ci for i ∈ {l,h}, (1)

so that there are gains from trading both high- and low-quality goods.

There are two types of frictions in the market. First, there is asymmetric information: sellers observe

the quality of the good they possess while buyers do not, though the probability µi that a randomly

selected good is quality i ∈ {l,h} is common knowledge. In order to generate the standard “lemons

problem,” we focus on the case in which

vl < ch. (2)

The second type of friction is a search friction: the buyers in our model post offers, but sellers only

sample a finite number of these offers. In particular, we assume that each seller samples one offer with

probability 1 − π and two offers with probability π. Throughout the paper, we refer to sellers with one

offer as “captive,” while we refer to those with two offers as “noncaptive” sellers. Trading is exclusive,

though: a seller can accept at most one offer, even when two offers are available.
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A buyer’s offer is a “menu” that contains a collection of “contracts.” Each contract is a pair (x, t),

where x denotes the quantity of asset to be exchanged and t denotes the transfer from the buyer to the

seller. In our environment, buyers offer menus with two contracts, {(xl, tl), (xh, th)} ∈
(
[0, 1]×R+

)2
,

where (xi, ti) is the contract intended for a seller of type i ∈ {l,h}. In Appendix A.1, we prove that

a buyer cannot gain by offering a more complicated deterministic mechanism, so that the equilibrium

we construct is also an equilibrium of a game in which buyers can offer arbitrary deterministic mecha-

nisms.13

Payoffs. A seller who owns a quality i good and accepts a contract (x, t) receives a payoff

t+ (1 − x)ci

while a buyer who acquires a quality i good at terms (x, t) receives a payoff

−t+ xvi.

Meanwhile, a seller with a quality i good who does not trade receives a payoff ci, while a buyer who

does not trade receives zero payoff.

Strategies and Definition of Equilibrium. Let zi = (xi, ti) denote the contract that is intended for a

seller of type i ∈ {l,h}, and let z = (zl, zh). A buyer’s strategy, then, is a distribution across menus,

Φ ∈ ∆
(
([0, 1]×R+)

2
)
. A seller’s strategy is much simpler: given the available menus, a seller should

choose the menu with the contract that maximizes her payoffs or mix between menus if she is indifferent.

Of course, conditional on a menu, the seller chooses the contract that maximizes her payoffs. In what

follows, we will take the seller’s optimal behavior as given.

A symmetric equilibrium is thus a distribution Φ?(z) such that:

1. Incentive compatibility: for almost all z = {(xl, tl), (xh, th)} in the support of Φ?(z),

tl + cl(1 − xl) > th + cl(1 − xh) (3)

th + ch(1 − xh) > tl + ch(1 − xl). (4)

13Sellers in our model have private information along two dimensions: the quality of their good and the alternative offer
available to them. A natural question, then, is whether buyers can screen sellers along both dimensions, i.e., offer contracts
that depend on both the asset quality and the availability (and details) of alternative menus. In Appendix A.1, we show that
the answer is “no” within the set of deterministic mechanisms: since the seller’s payoff conditional on accepting a contract is
independent of her outside offer, it is impossible to screen along this dimension without the ability to commit to a stochastic
mechansim.
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2. Buyer’s optimize: for almost all z = {(xl, tl), (xh, th)} in the support of Φ?(z),

z ∈ arg max
z

∑
i∈{l,h}

µi(vixi − ti)

[
1 − π+ π

∫
z′
χi(z, z′)Φ?(dz′)

]
, (5)

where

χi(z, z′) =


0
1
2
1

 if ti + ci(1 − xi)


<

=
>

 t′i + ci(1 − x′i). (6)

The function χi reflects the seller’s optimal choice. We have assumed that if the seller is indifferent

between menus, then she chooses among menus with equal probability. Within a given menu, we

have assumed that sellers do not randomize; for any incentive compatible contract, sellers choose the

contract intended for their type, as in most of the mechanism design literature (see, e.g., Myerson (1985a),

Dasgupta et al. (1979)).

3 Properties of Equilibria

Characterizing the equilibrium described above requires solving for a distribution over four-dimensional

menus. In this section, we establish a series of results that reduce the dimensionality of the equilibrium

characterization.

First, we show that each menu offered by a buyer can be summarized by the indirect utilities that it 

delivers to each type of seller, so that equilibrium strategies can in fact be defined by a joint distribution 

over two-dimensional objects (i.e., pairs of indirect utilities). Then, we establish that the marginal 

distri-butions of offers intended for each type of seller are well-behaved (i.e., that they have fully 

connected support and no mass points). Finally, we establish that there is a very precise link 

between the two contracts offered by any buyer, which imposes even more structure on the joint 

distribution of offers. In particular, we show that any two menus that are offered in equilibrium are 

ranked in exactly the same way by both low- and high-type sellers; that is, one menu is strictly 

preferred by a low-type seller if and only if it is also preferred by a high-type seller. This property of 

equilibria, which we call “strictly rank-preserving,” simplifies the characterization even more, as the 

marginal distribution of offers for high-quality sellers can be expressed as a strictly monotonic 

transformation of the marginal distribution of offers for low-quality sellers.
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3.1 Utility Representation

As a first step, we establish two results that imply any menu can be summarized by two numbers,

(ul,uh), where

ui = ti + ci(1 − xi) (7)

denotes the utility received by a type i ∈ {l,h} seller from accepting a contract zi.

Lemma 1. In any equilibrium, for almost all z in the support of Φ?, it must be that xl = 1 and tl = th + cl(1 −

xh).

In words, Lemma 1 states that all equilibrium menus require that low-quality sellers trade their 

entire endowment and that their incentive compatibility constraint always binds. This is reminiscent of 

the “no-distortion-at-the-top” result in the taxation literature or that of full insurance for the high-risk 

agents in Rothschild and Stiglitz (1976).

Corollary 2. In equilibrium, any menu of contracts {(xl, tl), (xh, th)} ∈
(
[0, 1]×R+

)2
can be summarized by a

pair (ul,uh) with xl = 1, tl = ul,

xh = 1 −
uh − ul
ch − cl

, and (8)

th =
ulch − uhcl
ch − cl

. (9)

Notice that, since 0 6 xh 6 1, feasibility requires that the pair (ul,uh) satisfies

ch − cl > uh − ul > 0. (10)

In what follows, we will often refer to the requirement uh > ul as a “monotonicity constraint.” Note

that, when this constraint binds, Corollary 2 implies that xh = 1 and th = tl.

3.2 Recasting the Buyer’s Problem and Equilibrium

Buyer’s Problem. Lemma 1 and Corollary 2 allow us to recast the problem of a representative buyer as

choosing a menu of indirect utilities, (ul,uh), taking as given the distribution of indirect utilities offered

by other buyers. For any menu (ul,uh), buyers must infer the probability that the menu will be accepted

by a type i ∈ {l,h} seller. In order to calculate these probabilities, let us define the marginal distributions

Fi (ui) =

∫
z′i

1
[
t′i + ci

(
1 − x′i

)
6 ui

]
Φ
(
dz′i
)

for i ∈ {l,h}. In words, Fl(ul) and Fh(uh) are the probability distributions of indirect utilities arising

from each buyer’s mixed strategy. When these distributions are continuous and have no mass points,
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the probability that a contract intended for a type i seller is accepted is simply 1 − π + πFi(ui), i.e.,

the probability that the seller is captive plus the probability that he is noncaptive but receives another

offer less than ui. However, if Fi(·) has a mass point at ui, then the fraction of noncaptive sellers of

type i attracted to a contract with value ui is given by F̃i(ui) = 1
2F

−
i (ui) +

1
2Fi(ui), where F−i (ui) =

limu↗ui Fi(u) is the left limit of Fi at ui. Given F̃i(·), each buyer solves

max
ul>cl, uh>ch

µl
(
1 − π+ πF̃l (ul)

)
Πl (ul,uh) + µh

(
1 − π+ πF̃h (uh)

)
Πh (ul,uh) (11)

s. t. ch − cl > uh − ul > 0, (12)

with

Πl (ul,uh) ≡ vlxl − tl = vl − ul (13)

Πh (ul,uh) ≡ vhxh − th = vh − uh
vh − cl
ch − cl

+ ul
vh − ch
ch − cl

. (14)

In words, Πi (ul,uh) is the buyer’s payoff conditional on the offer ui being accepted by a type i seller.

We refer to the objective in (11) as Π (ul,uh).

Before proceeding, note that Πh (ul,uh) is increasing in ul: by offering more utility to low-quality

sellers, the buyer relaxes the incentive constraint and can earn more profits when he trades with high-

quality sellers. As a result, one can easily show that the profit function Π (ul,uh) is (at least) weakly

supermodular. This property will be important in several of the results we establish below.

Equilibrium. Using the optimization problem described above, we can redefine the equilibrium in

terms of the distributions of indirect utilities. In particular, for each ul, let

Uh (ul) = arg max
u′h>ch

Π
(
ul,u′h

)
s.t. ch − cl > u

′
h − ul > 0.

The equilibrium can then be described by the marginal distributions {Fi(ui)}i∈{l,h} together with the

requirement that a joint distribution function must exist. In other words, a probability measure Φ over

the set of feasible (ul,uh)’s must exist such that, for each ul > u′l and uh > u′h

1 = Φ ({(ûl, ûh) ; ûh ∈ Uh (ûl)} , ûl ∈ [cl, vh])

F−l (ul) − Fl
(
u′l
)

= Φ
({

(ûl, ûh) ; ûh ∈ Uh (ûl) , ûl ∈
(
u′l,ul

)})
, (15)

F−h (uh) − Fh
(
u′h
)

= Φ
({

(ûl, ûh) ; ûh ∈ Uh (ûl) , ûh ∈
(
u′h,uh

)})
. (16)
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Note that this definition of equilibrium imposes two different requirements. The first is that buyers

behave optimally: for each ul, the joint probability measure puts a positive weight only on uh ∈ Uh (ul).

The second is aggregate consistency: the fact that Fl and Fh are marginal distributions associated with a

joint measure of menus.

3.3 Basic Properties of Equilibrium Distributions

In this section, we establish that, in equilibrium, the distributions Fl(ul) and Fh(uh) are continuous and 

have connected support (i.e., there are neither mass points nor gaps in either distribution).

Proposition 3. The marginal distributions Fl and Fh have connected support. They are also continuous, with the

possible exception of a mass point in Fl at vl.

As in Burdett and Judd (1983), the proof of Proposition 3 rules out gaps and mass points in the

distribution by constructing profitable deviations. A complication that arises in our model is that payoffs

are interdependent, e.g., a change in the utility offered to low-quality sellers changes the contract—and

hence the profits—that a buyer receives from high-quality sellers. We prove these properties sequentially,

first for Fh and then for Fl. We sketch the proofs here, and present the formal arguments in the Appendix.

To see that Fh has connected support, suppose toward a contradiction that it is constant on some

interval, and consider the equilibrium menu
(
u′l,u

′
h

)
, with u′h equal to the upper bound of this interval.

If either u′l < u′h or Fl is constant over an interval containing u′l, then one can construct a profitable

deviation by considering a slight decrease in uh; as in Burdett and Judd (1983), this deviation is profitable

because it attracts the same fraction of high-quality sellers but makes more profit per trade.14 The novel

case to consider, then, is when u′l = u′h and Fl has full support over the interval containing u′l. In this 

case, a decrease in uh will increase the payoff from trading with high-quality sellers but may decrease the 

payoff from trading with low-quality sellers since the monotonicity constraint requires that ul also

declines. Using the weak supermodularity of the profit function discussed above, we show that the

benefits from decreasing uh must outweigh the costs of decreasing ul,, and, hence, a profitable deviation

exists.

To see that Fh has no mass points, suppose toward a contradiction that it has a mass point at u ′h

for some equilibrium menu (u ′l,u
′
h). Again, if Πh

(
u′l,u

′
h

)
is strictly positive, then the logic of finding a

profitable deviation is very close to that in Burdett and Judd (1983): a small increase in u ′h will increase

profits by attracting a mass of high-quality sellers. The novel case that we must consider, then, is when

14When Fl is constant over an interval containing u′l, the profitable deviation also requires a decrease in ul.
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profits from the high-quality sellers are nonpositive. In this case, we show that the buyer must not be 

trading with high-quality sellers at all—otherwise, a decrease in uh would be both feasible and 

profitable.15 From (8), i f u ′h =  c h and the quantity traded with high types is zero, then i t must be that 

ul
′ = cl. Moreover, since we assumed a mass point at u ′h = ch, then it must be that there is a mass point 

at ul
′ = cl. However, in this case, an increase in ul is a feasible deviation and increases profits, which 

completes the contradiction.

Having shown that Fh is continuous and strictly increasing, we then apply an inductive argument

to prove that Fl has connected support and is continuous, with a possible exception at the lower bound

of the support. An important step in the induction argument, which we later use more generally, is to

show that the objective function Π (ul,uh) is strictly supermodular. We state this here as a lemma.

Lemma 4. Suppose Fh has connected support and is continuous over its support. Then the profit function is

strictly supermodular so that

Π (ul1,uh1) +Π (ul2,uh2) > Π (ul2,uh1) +Π (ul1,uh2) , ∀ui1 > ui2, i ∈ {l,h}

with strict inequality when ui1 > ui2, i ∈ {l,h} .

As noted above, the supermodularity of the buyer’s profit function reflects a basic complementarity

between the indirect utilities offered to low- and high-quality sellers. An important implication of

this result is that the correspondence Uh (ul) is weakly increasing. We use this property to construct

deviations similar to those described above in order to rule out gaps and mass points in the distribution

Fl almost everywhere in its support; later, in Section 4, we show that these mass points only occur in

a knife-edge case. Hence, generically, the marginal distribution Fl has connected support and no mass

points everywhere in its support.

3.4 Strict Rank-Preserving

In this section, we establish that every equilibrium has the property that the menus being offered are

strictly rank-preserving—that is, low- and high-quality sellers share the same ranking over the set of

menus offered in equilibrium—with the possible exception of the knife-edge case discussed above. We

prove this result by showing that the mapping between a buyer’s optimal offer to low- and high-quality

sellers, Uh(ul), is a well-defined, strictly increasing function. We start with the following definition.

15More precisely, in the candidate equilibrium under consideration, it must be the u ′h > u
′
l, which ensures that a decline in

uh would not affect the profits earned from low-quality sellers. If this were not true—i.e., if u ′h = u ′l—then the buyer would
be making non-negative profits from both types, which cannot be true when π ∈ (0, 1).
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Definition 5. For any subset Ul of Supp (Fl), an equilibrium is strictly rank-preserving over Ul if the cor-

respondence Uh (ul) is a strictly increasing function of ul for all ul ∈ Ul. An equilibrium is strictly rank-

preserving if it is strictly rank-preserving over Supp (Fl).

Equivalently, an equilibrium is strictly rank-preserving when for any two points in the equilibrium

support (ul,uh) and
(
u′l,u

′
h

)
, ul > u′l if and only if uh > u′h. Given this terminology, we can now

establish one of our key results.

Theorem 6. All equilibria are strictly rank-preserving over the set Supp (Fl) \ {vl}.

As we now describe, Theorem 6 follows from the facts established above. In particular, the strict

supermodularity of Π(ul,uh) implies that Uh (ul) is a weakly increasing correspondence. However,

since Fl (·) and Fh (·) are strictly increasing and continuous, we show that Uh(ul) can neither be multi-

valued nor have flats. Intuitively, if there exists a ul > ul and u′h > uh such that uh,u′h ∈ Uh(ul), then

the supermodularity of Π(ul,uh) implies that [uh,u′h] ⊂ Uh(ul). Since Fh(·) has connected support, if

Uh were a correspondence for some ul, then this would imply that Fl(·) must have a mass point at ul,

which contradicts Proposition 3. Similarly, if there exists uh and u′l > ul offered in equilibrium such

that Uh(u′l) = Uh(ul) = uh, then Fh would feature a mass point, in contradiction with Proposition 3.

Hence, Uh(ul) must be a strictly increasing function for all ul > ul.

Notice that, if Fl(·) is continuous everywhere, then every menu offered in equilibrium is accepted by

exactly the same fraction of low- and high-quality noncaptive sellers. We state this result in the following

Corollary to Theorem 6.

Corollary 7. If Fl and Fh are continuous, then Fh(Uh(ul)) = Fl(ul).

Taken together, Theorem 6 and Corollary 7 simplify the construction of an equilibrium, which we un-

dertake in the next section. Specifically, when an equilibrium exists in which the marginal distributions

Fl and Fh are continuous, then the equilibrium can be described compactly by the marginal distribution

Fl and the policy function Uh(ul).

4 Construction of Equilibrium

In this section, we use the properties established above to help construct equilibria. Then, we show

that the equilibrium we construct is unique. In this sense, we characterize the entire set of equilibrium

outcomes in our model.
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4.1 Special Cases: Monopsony and Perfect Competition

To fix ideas, we first characterize equilibria in the well-known special cases of π = 0 and π = 1 (i.e., when 

sellers face a monopsonist and when they face two buyers in Bertrand competition, respectively). As we 

will see, several features of the equilibrium in these two extreme cases guide our construction of

equilibria for the general case of π ∈ (0, 1).

Monopsony. When each seller meets with at most one buyer, the buyers solve

max
(ul,uh)

µl(vl − ul) + µh

[
vh − uh

vh − cl
ch − cl

+ ul
vh − ch
ch − cl

]
,

subject to the monotonicity and feasibility constraints in (12). The solution to this problem, summarized

in Lemma 8 below, is standard and, hence, we omit the proof.

Lemma 8. Suppose π = 0, and let

φl ≡ 1 −
µh
µl

(
vh − ch
ch − cl

)
. (17)

If φl > 0, then the unique equilibrium has ul = cl with xl = 1 and uh = ch with xh = 0; if φl < 0, then

ul = uh = ch with xl = xh = 1; and if φl = 0, then ul ∈ [cl, ch] with xl = 1 and uh = ch with xh ∈ [0, 1].

The parameter φl is a summary statistic for the adverse selection problem: it represents the net

marginal cost (to the buyer) of delivering an additional unit of utility to a low-quality seller. It is strictly

less than 1 because the direct cost of an additional unit of transfer to a low-quality seller is partially

offset by the indirect benefit of relaxing this seller’s incentive constraint, which allows the buyer to trade

more with a high-quality seller. This indirect benefit is captured by the second term on the right-hand

side: when this term is large, φl is small, the cost of trading with high-quality sellers is low, and adverse

selection is mild. Conversely, when this term is small, φl is large, it is costly to trade with high-quality

sellers, and therefore adverse selection is relatively severe. According to this measure, adverse selection

is thus severe when the relative fraction of high-quality sellers, µh/µl, is large; the gains from trading

with high-quality sellers, vh − ch, are relatively large; and/or the information rents associated with

separating high- and low-quality sellers, ch − cl, are small.

When φl is positive, the net cost to a buyer of increasing ul is positive, so she sets ul as low as possible, 

i.e., ul = cl. This implies that the high-quality seller is entirely shut out (i.e., xh = 0. Otherwise, when φl < 

0, increasing ul yields a net benefit to the buyer. As a result, a buyer raises ul until the 

monotonicity constraint in (12) binds (i.e., she pools high- and low-quality sellers, offering uh = ul = 

ch).
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Before proceeding to the perfectly competitive case, we highlight two features of the equilibrium

under monopsony. First, buyers offer separating menus (uh > ul) when φl is positive and pooling menus

(uh = ul) when φl is negative. Second, they make non-negative payoffs on both types when φl > 0,

but lose money on low-quality sellers when φl < 0. In other words, the equilibrium features cross-

subsidization when φl < 0, but not when φl > 0.

Bertrand Competition. When competition is perfect (i.e., when π = 1), our setup becomes the same as 

that in Rosenthal and Weiss (1984), and similar to that of Rothschild and Stiglitz (1976). In this case,

when φl > 0, the unique equilibrium is in pure strategies, with buyers offering the standard “least-cost

separating” contract; type l sellers earn ul = vl and type h sellers trade a fraction of their endowment

at a unit price of vh, such that the incentive constraint of the low-quality seller binds. However, when

φl < 0, there is no pure strategy equilibrium.16 In this case, an equilibrium in mixed strategies emerges,

as in Dasgupta and Maskin (1986) and Rosenthal and Weiss (1984).17 Each buyer mixes over menus, all

of which involve negative profits from low-quality sellers, offset exactly by positive profits from high-

quality sellers, leading to zero profits. The marginal distribution Fl(·) is such that profitable deviations

are ruled out. The following lemma summarizes these results.

Lemma 9. When π = 1, the unique equilibrium is as follows: (i) if φl > 0, then ul = vl with xl = 1 and

uh = vh(ch−cl)+vl(vh−ch)
vh−cl

with xh = vl−cl
vh−cl

; (ii) if φl < 0, then the symmetric equilibrium is described by the

distribution

Fl (ul) =

(
ul − vl

µh (vh − vl)

)−φl

, (18)

with Supp (Fl) = [vl, v̄] and Fh(uh) = Fl(Uh(ul)), where v̄ = µhvh + µlvl and Uh (ul) satisfies

µhΠh (ul,Uh (ul)) + µlΠl (ul,Uh (ul)) = 0. (19)

As with π = 0, equilibrium when π = 1 features no cross-subsidization when φl > 0 and cross-

subsidization when φl < 0. However, unlike the case with π = 0, equilibrium with π = 1 features

separating contracts for all values of φl. These properties guide our construction of equilibria in the

next section, when we study the general case of π ∈ (0, 1).

16All buyers offering the least-cost separating contract cannot be an equilibrium, as a pooling offer attracts both types and
yields positive profits to the buyer. All buyers offering pooling cannot be an equilibrium either, since it is vulnerable to a
cream-skimming deviation, wherein a competing buyer can draw away the high-quality seller by offering a contract with x < 1
but at a higher price.

17Luz (2014) shows that the equilibrium is unique.
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4.2 General Case: Imperfect Competition

We now describe how to construct equilibria when π ∈ (0, 1). Recall that an equilibrium is summarized

by a distribution Fl(ul) and a strictly increasing function Uh(ul). A key determinant of the structure of

equilibrium menus is whether the monotonicity constraint in (12) is binding. When it is slack, the local

optimality (or first-order) condition for ul, along with the strict rank-preserving condition that relates

Fh(Uh(ul)) = Fl(ul) together characterize the equilibrium distribution Fl(ul). The function Uh(ul) then

follows from the requirement that all menus (ul,Uh(ul)) must yield the buyer equal profits. When the

monotonicity constraint is binding, the policy function is, by definition, Uh(ul) = ul.18

Our analysis of π = 0 and π = 1 points to the importance of φl. Recall that when φl > 0, the

monotonicity constraint was always slack. When φl < 0, on the other hand, the monotonicity constraint

was binding only when π = 0 and slack at π = 1. Guided by these results, we discuss our construction

separately for the φl > 0 and the φl < 0 cases.19

Case 1: φl > 0. For this case, in line with the analysis of π = 0 and π = 1, we conjecture that, for any

π ∈ (0, 1), the monotonicity constraint is slack, i.e., that Uh(ul) > ul for all ul ∈ Supp(Fl). Proposition 10

establishes that this is indeed the case.

Proposition 10. For any π ∈ (0, 1) and φl > 0, there exists an equilibrium where Fl and Uh satisfy the following

properties:

1. Fl solves the differential equation

πfl(ul)

1 − π+ πFl(ul)
(vl − ul) = φl , (20)

with the boundary condition Fl(cl) = 0.

2. Uh(ul) > ul and satisfies the equal profit condition:

(1 − π+ πFl(ul)) [µhΠh(ul,Uh(ul)) + µl (vl − ul)] = µl(1 − π) (vl − cl) . (21)

Equation (20) is derived by taking the first-order condition of (11) with respect to ul—holding uh

fixed—and then imposing the strict rank-preserving property.20 This necessary condition is familiar from
18Of course, uh = Uh(ul) must be locally optimal as well, but this condition is implied by the joint requirements on ul and

Uh(ul) described above.
19The equilibrium when φl = 0 has a slightly different structure and, for the sake of brevity, we relegate analysis of this

knife-edge case to Appendix A.9.
20As we discuss in the proof of Proposition 10, this first-order condition requires three assumptions: that uh > ul for all

menus; that there is no mass point at the lower bound of the support of Fl(ul); and that the implied quantity traded by the
high-quality seller is interior in all trades, i.e., 0 < xh = (uh − ul) /(ch − cl) < 1, except possibly at the boundary of the
support of Fl. All of these assumptions are confirmed in equilibrium.
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basic production theory. The left-hand side is the marginal benefit to the buyer of increasing ul, i.e., the

product of the semi-elasticity of demand and the profit per trade. The right-hand side, φl, represents the

marginal cost of increasing the utility of the low-quality seller, taking into account the fact that increasing

ul relaxes the incentive constraint. Note that, even though (20) ensures that local deviations by a buyer

from an equilibrium menu are not profitable, completing the proof requires ensuring that there are no

profitable global deviations as well; we establish that this is true in Appendix A.4.

The boundary condition requires that the lowest utility offered to the low-quality seller is cl. From

(21), and using the fact that Fl(cl) = 0, we find Uh(cl) = ch, so that the worst menu offered in equilib-

rium coincides with the monopsony outcome. Loosely speaking, if the worst menu offers more utility

to low-quality sellers than cl, the buyer could profit by decreasing ul and uh; the gains associated with

trading at better terms with the low types would exceed the losses associated from trading less quantity

with high types, precisely because φl > 0. Given that ul = cl, if the worst equilibrium menu offers

more utility to high-quality sellers than ch, then a buyer offering this menu could profit by decreasing

uh; his payoff from trading with high types would increase without changing the payoffs from trading

with low types.

The final equilibrium object, Uh(ul), is characterized by the equal profit condtion: the left side of

(21) defines the buyer’s payoff from the menu (ul,Uh(ul)), while the right side is the profit earned from

the worst contract offered in equilibrium. Figure 1 plots the two equilibrium functions in this region.

Fl(ul)

ul
cl vl

1

ul

Uh(ul)

ul
cl vl

ch

uh

ul

Figure 1: Equilibrium for π ∈ (0, 1), φl > 0. The left panel plots the CDF Fl(ul) and the right panel plots the mapping Uh(ul).

Notice from (20) that, since φl > 0, our equilibrium has vl > ul for all menus in equilibrium, so that

buyers earn strictly positive profits from trading with low-quality sellers. It is straightforward to show

that buyers also earn strictly positive profits from trading with high-quality sellers. Hence, in this region,
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the equilibrium features no cross-subsidization, as was the case for π = 0 and π = 1. Finally, it is also

worth noting that the equilibrium distribution of offers converges to the limiting cases as π converges to

both 0 and 1; in the former case, the distribution converges to a mass point at the monopsony outcome,

while in the latter case, the distribution converges to a mass point at the least-cost separating outcome.

Case 2: φl < 0. In this region of the parameter space, the equilibrium features a pooling menu when

π = 0 and a distribution of separating menus when π = 1. This leads us to conjecture that the equilibrium

for π ∈ (0, 1) can feature pooling, separating, or a mixture of the two, depending on the value of π. The

following lemma formalizes this conjecture and shows the existence of a threshold utility for the offer

to low-quality sellers, such that all offers with ul below this threshold are pooling menus, while all

offers above the threshold are separating menus.21 Depending on whether this threshold lies at the

lower bound, the upper bound, or in the interior of the support of Fl(ul), there are three possible

cases, respectively: all equilibrium offers are separating menus, all are pooling menus, or there is a

mixture with some pooling menus (offering relatively low utility to the seller) and some separating

menus (offering higher utility). Later, in Proposition 12, we provide conditions on φl and π under

which each case obtains.

Proposition 11. For any π ∈ (0, 1) and φl < 0, there exists an equilibrium where Fl and Uh satisfy the following

properties:

1. There exists a threshold ûl such that, for any ul in the interior of Supp(Fl):

(a) if ul 6 ûl, Uh(ul) = ul and Fl satisfies

πfl(ul)

1 − π+ πFl(ul)
(µhvh + µlvl − ul) = 1 , (22)

(b) if ul > ûl, Uh(ul) > ul and Fl satisfies (20).

2. Uh(ul) = ch and Uh(ul) = ul.

To understand the first set of (necessary) conditions in Proposition 11, consider the region where the

buyers offer pooling menus. Here, buyers trade off profit per trade against the probability of trade, with

no interaction between offers and incentive constraints. As a result, the equilibrium in this pooling region

behaves as in the canonical Burdett and Judd (1983) single-quality model, with the buyer’s payoff equal

21At this point, it may seem arbitrary to conjecture that pooling occurs at the bottom of the distribution and separation at the
top. As we will discuss later in the text, the reason this is ultimately true is that the cream-skimming deviation—which makes
the pooling offer suboptimal—becomes more attractive as the indirect utility being offered increases.
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to the average value µhvh + (1 − µh)vl. This yields (22). In the region where buyers offer separating

menus, on the other hand, Fl(ul) is characterized by the local optimality condition (20), exactly as in the

φl > 0 case. Recall from our discussion that this differential equation accounts explicitly for the effect of

an offer ul on the seller’s incentive constraint. In this region, Uh(ul) is determined by the equal profit

condition.

The second part of the result describes boundary conditions for the worst and best menus offered

in equilibrium. The first condition requires that the worst menu yields utility ch to high-quality sellers.

To see why, suppose the worst menu is a pooling menu with Uh(ul) = ul > ch. Then, lowering both

uh and ul leads to strictly higher profits. If the worst menu is separating with Uh(ul) > ch, then a

downward deviation in only uh is feasible and strictly increases profits. The second condition requires

that the best menu offered in equilibrium is a pooling menu. Intuitively, if the best menu offered in

equilibrium were a separating menu, then xh < 1. This cannot be optimal when φl < 0: the buyer can

trade more with the high-quality seller by increasing the utility offered to low-quality sellers. Since this

is already the best menu in equilibrium, this deviation has no impact on the number of sellers the buyer

attracts but yields strictly higher profits.

Uh(ul)

ul

45◦

ul

uh

ch

ul

Uh(ul)

ul

45◦

ul

uh

ch

ul

Uh(ul)

ul

45◦

ul

uh

ch

ul

Figure 2: The mapping Uh(ul) for all pooling, all separating, and mixed equilibria when φl < 0

Given these properties, we now establish two critical values—φ1(π) and φ2(π), with φ2(π) < φ1(π) <

0—that determine which of the three cases described above emerge in equilibrium. When φl < φ2(π),

the threshold ûl is equal to the upper bound of the support ul and there is an all pooling equilibrium.

When φl > φ1(π), the monotonicity constraint is slack almost everywhere, so that ûl = ul, and the

equilibrium features all separating menus. Finally, if φl lies between these two critical values, we have a

mixed equilibrium, with an intermediate threshold ûl ∈ (ul,ul). Figure 2 illustrates Uh(ul) for all three

possibilities.
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Proposition 12. For any π ∈ (0, 1), there exist two cutoffs φ2(π) < φ1(π) < 0 such that an all pooling

equilibrium exists for all φl 6 φ2(π), a mixed equilibrium exists for all φl ∈ (φ2(π),φ1(π)), and an all separating

equilibrium exists for all φl ∈ (φ1(π), 0).

Intuitively, for a pooling menu (ul,ul) to be offered in equilibrium, the cream-skimming deviation

(ul − ε,ul) for some ε > 0 cannot yield strictly higher profits. To see how incentives to cream-skim vary

with φl and π, notice that there are two sources of higher profits from the menu (ul − ε,ul), relative to

the candidate pooling menu. First, it decreases the loss conditional on trading with a low-quality seller.

Second, it reduces the probability of trading with a noncaptive low-quality seller; since the buyer loses

money on these sellers, this reduction in trading probability raises profits. The cost of cream-skimming

is that the buyer earns lower profits on high-quality sellers. Therefore, incentives to cream-skim are

weak—and thus pooling is easier to sustain—when high-quality sellers are relatively abundant (φl very

negative) and/or there are relatively few noncaptive sellers (π is small).

The higher the level of utility being offered in a pooling menu, the more vulnerable it is to cream-

skimming. Therefore, if such a deviation is profitable at the lowest candidate value, ch, then pooling

cannot be sustained at all: this is the condition that determines the cutoff φ1(π). Similarly, the cutoff

φ2(π) defines the boundary at which cream-skimming is not profitable even at the best pooling menu,

ul. We derive these thresholds formally and provide a full equilibrium characterization in Appendix

A.5.

Notice that, in all three cases, ul > vl (since ul > ch > vl) so that buyers always suffer losses

when trading with low-quality sellers. Hence, as in the extreme cases of π = 0 and π = 1, there is

cross-subsidization in every equilibrium when φl < 0. Finally, as in the case of φl > 0, the equilibrium

distribution converges to the limiting cases as π converges to both 0 and 1.

Figure 3 summarizes the various types of equilibria and the regions in which each one obtains. The

x- and y-axes represent the intensity of competition and severity of adverse selection, respectively. Recall

that the latter is summarized by φl, which is a function of µh, the fraction of high-quality assets, as well

as the valuations vh, ch, cl. For concreteness, we use µh to vary φl on the y-axis—a higher fraction of

high-quality assets implies a lower φl and, therefore, milder adverse selection.22

22The boundaries are also redefined accordingly: µh 6 µ0 if and only if φl > 0 and µh 6 µk(π) if and only if φl > φk(π)
for k ∈ {1, 2}.
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Figure 3: Equilibrium regions

4.3 Uniqueness

In the previous section, we constructed equilibria for all π ∈ (0, 1) and φl 6 1. In Theorem 13, below, we

establish that these equilibria are unique. For intuition, we sketch the arguments here for φl 6= 0.23 First,

we show that for all φl 6= 0, no equilibrium features a mass point, even at vl. Next, when φl > 0, we

prove that no equilibrium features pooling menus on a positive measure subset of Fl. In this case, since

equilibria have no mass points and must be separating almost everywhere, the equilibrium we construct

in Proposition 10 describes the unique equilibrium.

When φl < 0, we demonstrate uniqueness of the equilibrium with a threshold ûl in steps. First, we

show that any equilibrium features pooling at the upper bound of the support of Fl. Second, we prove

that any equilibrium features at most one interval of pooling menus followed by at most one interval

of separating menus. Third, we prove that the equilibria characterized in Proposition 12 are mutually

exclusive, so that equilibria without mass points are unique. Since no equilibrium features mass points

when φl < 0, these results establish the uniqueness of the equilibrium characterized in Proposition 12.

We summarize these results in the following theorem.

Theorem 13. For any π ∈ (0, 1) and φl ∈ R, there exists an equilibrium and it is unique.

4.4 Discussion

The equilibrium characterized above has a number of testable implications for transaction prices and

quantities. The first set of predictions pertains to properties of equilibrium menus. We highlight three

23In Appendix A.9, we also prove uniqueness for the knife-edge case of φl = 0.
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robust predictions. First, the strict rank-preserving property suggests a positive correlation between 

the contracts that buyers offer to different types of sellers: those buyers who make attractive offers to 

low-quality sellers will also make attractive offers to high-quality sellers. Hence, in equilibrium, buyers 

do not specialize in trading with a particular type of seller but rather trade with equal frequency across 

all types. Second, whether buyers pool different types of sellers or separate them (using a menu of 

options) depends crucially on the severity of the two frictions.24 Pooling is more likely in markets where 

competition among buyers is relatively weak and adverse selection is relatively mild. Alternatively, 

separation is more likely when adverse selection is relatively severe—so that the information costs of 

trading with high-quality sellers are large relative to the benefits—and competition is relatively strong—

so that the payoffs from cream-skimming are relatively high.25 Third, the theory also predicts that menus

that are less attractive from the perspective of sellers are more likely to be pooling. In other words, those

who are posting offers with relatively unattractive terms should be offering fewer options and should

account for a smaller share of observed transactions.

The second set of implications pertains to dispersion. Note that, in the region with separating

menus, the model predicts dispersion within and across types. This is true both for quantities traded

(coverage in an insurance context or loan size in a credit market context) as well as prices (premia or

interest rates, respectively). The extent of dispersion—both the support and the standard deviation of

the quantity/price distributions—is determined by the interaction of competition (measured by π) and

adverse selection (measured by φl).

This joint dependence calls into question the practice of identifying imperfect competition or asym-

metric information in isolation using cross-sectional dispersion. For example, a common empirical

strategy to identify adverse selection is to test the correlation between the quantity an agent trades and

her type, as measured by ex-post outcomes.26 In our equilibrium, there is a negative correlation between

the seller’s quality and the quantity she sells, but the quantitative strength of this relationship is also a

function of the market structure. As a result, using the relationship between quantity and type without

accounting for the imperfect nature of competition is likely to yield misleading conclusions. A similar

concern applies to the strategy of identifying search frictions from price dispersion.27 In markets where

24This result stands in stark contrast to, e.g., Guerrieri et al. (2010). In that model, and many like it, the quantity traded with
high-quality sellers is independent of the distribution of types in the market; trade with high-quality sellers is distorted even if
the fraction of low-quality assets in the market is arbitrarily small.

25Consistent with our findings, Decarolis and Guglielmo (2015) find evidence of greater cream-skimming by health insurance
providers when the market is more competitive.

26This technique for identifying adverse selection has been applied to a number of markets, following the seminal paper by
Chiappori and Salanie (2000); recent examples include Ivashina (2009), Einav et al. (2010b), and Crawford et al. (2015).

27Using dispersion in prices to help identify search frictions is standard practice in the IO literature; for a recent example,

24



adverse selection is a concern, the extent of cross-sectional variation in terms of trade is also a function

of selection-related parameters. Obtaining an accurate assessment of trading frictions in such settings

thus requires controlling for the underlying distribution of types.

5 Welfare and Policy

Many important markets in which adverse selection is a first-order concern—such as insurance, credit,

and certain financial markets—are in the midst of dramatic changes. Some of these changes are regula-

tory in nature; for example, there are several recent policy initiatives to make health insurance markets

and over-the-counter markets for financial securities more competitive and transparent. Other changes

derive from technological improvements; for example, advances in credit scoring reduce information

asymmetries for lenders. In this section, we use the framework developed above to examine the effects

of these types of changes. We show that increasing competition or reducing information asymmetries

can worsen the distortions from adverse selection when markets are relatively competitive. As a result,

initiatives to make these markets more competitive or transparent are only welfare-improving when both

frictions are relatively severe, i.e., when buyers have a lot of market power (i.e., when π is low) and the

adverse selection problem is relatively severe (i.e., when φl is high or, equivalently, when µh is small).

5.1 Welfare

Our welfare criterion is the objective of a utilitarian planner, defined as the sum of the utilities of buyers

and sellers. Given this criterion, social welfare is given by

W(π,µh) = (1 − µh)vl + µh

{
(1 − π)

∫
[vhxh (ul) + ch (1 − xh (ul))]dFl (ul) (23)

+π

∫
µh [vhxh (ul) + ch (1 − xh (ul))]d

(
Fl (ul)

2
)}

where, in a slight abuse of notation, we let

xh (ul) = 1 −
Uh (ul) − ul
ch − cl

. (24)

The first term represents the payoff generated by low quality assets; since xl = 1 with probability 1,

all low-quality assets are allocated to buyers. The second term captures the expected payoffs generated

by trades between buyers and captive high-quality sellers; such a seller trades xh (ul) with the buyer,

where ul is drawn from Fl (ul), and consumes the remaining 1 − xh(ul) herself. Finally, the last term

see Gavazza (2015).
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in (23) captures the expected payoffs generated by trades between buyers and noncaptive high quality

sellers; since noncaptive sellers choose the maximum indirect utility among the two offers they receive,

they trade an amount xh (ul) where ul is drawn from Fl (ul)
2.

5.2 Increasing Competition

We first study the effects of increasing competition, which has been a common policy response to address 

perceived failures in markets for insurance, credit, and certain types of financial s ecurities. For example, 

a recent report by the Congressional Budget Office ( 2014) a rgues f or “ fostering g reater competition” 

in health insurance plans by developing “policies that would increase the average number of sponsors 

per region,” which would then “increase the likelihood that beneficiaries would select low-cost plans.” 

Similarly, the U.S. Treasury (2010) argued that the Consumer Financial Protection Bureau “will make 

consumer financial m arkets m ore t ransparent –  a nd t hat’s g ood f or e veryone: T he a gency w ill give 

Americans [...] the tools they need to comparison shop for the best prices and the best loans, which 

will [...] increase competition and innovations that benefit b orrowers.” A  s imilar r ationale underlies 

the Core Principles and Other Requirements for Swap Execution Facilities (Commodity Futures Trading 

Commission (2013)), issued under the Dodd-Frank Wall Street Reform and Consumer Protection Act, 

which requires that a swap facility send a buyer’s request for price quotes to a minimum number of 

sellers before a trade can be executed.

In this section, we study the potential costs and benefits of these types of policies by examining the

relationship between ex ante welfare and competition, as captured by π. We then discuss the implications

of our findings for various types of policy interventions.

Welfare and Competition. In Proposition 14, we establish that welfare is decreasing in π when the

adverse selection problem is relatively mild, so that more competition is unambiguously bad for welfare

in this region of the parameter space. However, when the adverse selection problem is severe, we show

that W is inverse U-shaped in π; i.e., there is an interior level of competition that maximizes welfare in

this region of the parameter space.

Proposition 14. If φl 6 0, welfare is maximized at π = 0. Otherwise, it is maximized at a π ∈ (0, 1).

The first result is straightforward. Since a monopsonist offers a pooling contract in this region of

the parameter space, all gains from trade are realized. Competition only serves to increase incentives

to cream-skim. To ensure that such a deviation is not profitable, equilibrium menus offer high-quality
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sellers a higher price but a lower quantity to trade, causing a decline in welfare.

The second result—that welfare is maximized at an interior value of π when φl > 0—is less obvious. 

To see the intuition for this result, first n ote t hat, a s π  i ncreases, Fl (ul) i ncreases i n t he s ense o f first-

order stochastic dominance: Fl(ul) shifts to the right and ul increases. Intuitively, in equilibrium, more 

competition forces buyers to allocate more surplus to sellers. Second, and crucially, xh(ul) is hump-

shaped in ul: it increases near the monopsony offer cl and decreases when ul is sufficiently close to the 

competitive offer, vl. When π is close to zero, ul is relatively small and the distribution of offers is 

clustered near the monopsony contract; a small increase in π causes a rightward shift in the density of 

offers to values of ul associated with higher values of xh, increasing the gains from trade realized between 

buyers and high-quality sellers. In contrast, when π is close to 1, ul is close to vl, and the distribution of 

offers is clustered near the competitive contract; in this case, a small increase in π causes a shift toward 

values of ul associated with lower values of xh.

Therefore, understanding why welfare is hump-shaped in π ultimately requires understanding why

xh(ul) is hump-shaped in ul. Note that, ceteris paribus, an increase in ul relaxes the type l seller’s

incentive compatibility constraint, allowing buyers to raise xh. In contrast, ceteris paribus, an increase in

uh tightens the type l seller’s incentive compatibility constraint, requiring buyers to lower xh. Thus, as

offers to both types increase, the net effect on xh depends on which one rises faster—formally, whether

U ′h(ul) is greater or less than 1. Figure 4 illustrates this relationship between the quantity traded with

high types, xh, and the rate at which uh and ul increase within the set of equilibrium menus being

offered. The figure reveals that ul rises faster than uh for smaller values of ul, so that xh is increasing

in this region. However, as ul nears vl, uh rises faster and thus xh is decreasing in this region.

xh

ul
cl vl

u∗

Uh(ul)

ul
cl vl

ch

uh

45◦

u∗

Figure 4: Trade (xh) and Utility (Uh) of high-quality seller as functions of ul when π > 0.
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To explain the hump-shape of welfare, then, we need to understand why U ′h(ul) < 1 for low levels of

ul and U ′h(ul) > 1 for high levels of ul. While this slope is a complicated equilibrium object, determined

by the interaction of an individual buyer’s optimal strategy and the equilibrium distribution of offers,

the basic intuition can be understood through two opposing forces. First, it is cheaper for buyers to

provide utility to the low type (relative to the high type) because doing so has the additional benefit of

relaxing the incentive constraints; we call this the “incentive effect” and this force tends to reduce the

slope, U ′h(ul). Second, as ul rises, buyers have more incentive to attract type h sellers, relative to type l

sellers; formally, one can show that Πh(ul,Uh(ul))/Πl(ul,uh) is increasing in ul. This effect, which we

call the “composition effect,” leads them to increase uh at faster rates at higher ul.

To illustrate these two forces more clearly, consider the following optimality condition that any

equilibrium menu (ul,Uh(ul)) must satisfy:28

U ′h(ul) =
φl
φh︸ ︷︷ ︸

incentive effect

Πh(ul,Uh(ul))
Πl(ul)︸ ︷︷ ︸

composition effect

(25)

where φh = (vh − cl)/ch − cl) is the marginal cost of providing an additional unit of utility to type

h sellers—i.e., φh = dΠh
duh

—and for notational convenience Πl(ul) ≡ Πl(ul,uh). The first term, the

incentive effect, is the ratio of the marginal costs of providing utility to the two types of sellers. Since

this term is strictly less than 1, all else equal, the incentive effect leads to more aggressive competition

for the low type and, therefore, to uh rising more slowly than ul.

The second term, the ratio of profits, can be larger or smaller than 1, depending on ul. When ul

is close to the monopsony outcome, Πh ≈ 0, so the composition effect is also less than 1 and we have

U ′h(ul) < 1. However, as ul approaches the upper bound vl, this second term overwhelms the incentive

effect, resulting in U ′h(ul) > 1.

To see the behavior of this second term as ul converges to vl, we note that profits from both types

go to 0 in the limit. The ratio of profits, applying l’Hôpital’s rule, is given by:

lim
ul→vl

Πh(ul,Uh(ul))
Πl(ul)

= lim
ul→vl

dΠh(ul,Uh(ul))
dul

dΠl(ul)
dul

= lim
ul→vl

φhU
′
h(ul) −

vh − ch
ch − cl

. (26)

Now, suppose this limit is finite. Then,

lim
ul→vl

φl
φh

Πh(ul,Uh(ul))
Πl(ul)

= φlU
′
h(vl) −

φl
φh

vh − ch
ch − cl

< U ′h(vl) , (27)

28This equation combines the optimality condition (20) for ul, the corresponding optimality condition for uh,

πfh
1 − π+ πFh

Πh = φh ,

and the strict rank-preserving property Fl(ul) = Fh(Uh(ul)), which implies fl = fhU ′h(ul).
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which implies that (25) cannot hold. In other words, if the ratio of profits is finite in the limit, buyers

have incentive to offer a lower uh. The only way to discourage such deviations is to make high types

more profitable (in the limit, infinitely so), i.e., limul→vl
Πh
Πl

= limul→vl U ′h =∞. This is why xh has to

be declining in ul close to the Bertrand outcome.

Policy Implications. These results offer a cautionary note for policies attempting to make markets

with adverse selection more competitive. They suggest that such attempts are desirable only when

both market power and the distortions from adverse selection are relatively severe. If either friction

is relatively mild, then there is actually a case for reducing competition. One way for policymakers

to achieve this is by making entry more costly; though we have treated π as a structural parameter,

it is straightforward to endogenize it with an explicit entry game and/or search costs. However, the

results above are also relevant to other policies aimed at stimulating competition and trade. Perhaps

the most obvious, direct form of intervention is when the government enters the market as a “buyer.”29

As we now show, studying this type of intervention in a framework that explicitly models imperfect

competition and adverse selection with screening yields new, and perhaps counterintuitive, insights.

To study this type of intervention, consider a policy in which the government announces that it

stands ready to buy any quantity from sellers at a price p ∈ (cl, vl). This is a natural policy to consider,

as it unambiguously increases welfare when adverse selection is severe (φl > 0) and market power is

concentrated (π = 0).30 However, as we establish in the lemma below, the effects of such a policy are

ambiguous when π ∈ (0, 1).

Lemma 15. Suppose φl > 0. If π is sufficiently small, then welfare is increasing in p for p ∈ [cl, vl). If π is

sufficiently close to 1, then welfare is decreasing in p for p ∈ [cl, vl).

The results in Lemma 15 mirror the findings in Proposition 14, precisely because this type of inter-

vention mimics the effects of directly increasing competition. In particular, the government’s offer raises

the sellers’ outside option, and this leads buyers to offer more surplus to sellers in an effort to retain

market share. When π is small, as we explained above, the surplus offered to low-quality sellers in-

creases relatively quickly; this helps to relax the distortions arising from adverse selection and increase
29This form of intervention has been discussed and/or implemented in a variety of markets where policymakers have been

concerned about the deleterious effects of imperfect competition and adverse selection. One obvious example is the market
for student loans, in which public and private lenders compete side by side. This type of “public option” is also available to
some Americans seeking health insurance—namely, the poor and the elderly—and universal access to a government plan was
a widely debated feature of the Affordable Care Act (it was ultimately left out). Finally, at the height of the recent financial
crisis, policymakers considered using funds from the Troubled Asset Relief Program to enter key markets, such as those for
asset-backed securities, and to buy assets directly in order to put a “floor” under prices in these markets.

30When π = 1, on the other hand, this policy has no effect since all prices in equilibrium are larger than vl.
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the volume of trade with high-quality sellers, thus increasing welfare. When π is large, the surplus

offered to high-quality sellers increases relatively quickly; this amplifies the distortions arising from ad-

verse selection, tightening the incentive constraints, decreasing trade with high-quality sellers, and thus

lowering welfare.

These results have interesting implications for the efficacy of the asset purchase programs that were

proposed and debated during the recent financial crisis; see, e.g., Tirole (2012), Philippon and Skreta

(2012), and Guerrieri and Shimer (2014a). In particular, since most of the models in this literature abstract

from imperfect competition, they fail to capture both the positive and negative effects highlighted in

Lemma 15.31 For instance, within the context of a perfectly competitive market, several have argued that

this type of intervention must necessarily lose money (for the government) to have beneficial effects on

welfare. Lemma 15 shows that, with imperfect competition, this is not the case: when π is small, sellers

never even trade with the government, and yet the availability of this outside option increases welfare.

However, when π is large, our results suggest that such a program may be detrimental for welfare

even if, in principle, the program makes non-negative profits. These results suggest that incorporating

market structure can significantly alter—and even reverse—some of the lessons that have been drawn in

the literature studying interventions in markets suffering from adverse selection.

5.3 Reducing Information Asymmetries

We now study the welfare consequences of reducing informational asymmetries. This exercise sheds

light on the implications of certain policy initiatives as well as the effects of various technological

innovations. For example, an important debate in insurance, credit, and financial markets centers around

information that the informed party (the sellers in our context) is required to disclose and the extent to

which such information can be used by the uninformed party (the buyers in our model) to discriminate.32

Moreover, technological developments in these markets also have the potential to decrease informational

asymmetries, as advanced recordkeeping and more sophisticated scoring systems (e.g., credit scores)

31There are several papers in this literature that do not assume a competitive market structure, such as Camargo et al. (2015).
See Lester et al. (2013) for a more thorough review of the literature.

32In insurance markets, these questions typically concern an individual’s health factors, both observable (e.g., age or gender) 
and unobservable (e.g., pre-existing conditions) by the insurance provider. In credit markets, similar questions arise with 
respect to observable characteristics that can legally be used in determining a borrower’s creditworthiness, as well as the 
amount of information about a borrower’s credit history that should be available to lenders (e.g., how long a delinquency 
stays on an individual’s credit history). In financial markets, the relevant issue is not only whether a seller discloses relevant 
information about an asset to a buyer but also whether the payoff structure of the asset is sufficiently transparent for sellers to 
distinguish good from bad assets. For example, to support “sustainable securitisation markets,” the Basel Committee on 
Banking Supervision and the International Organization of Securities Commissions established a joint task force to identify 
criteria for “simple, transparent, and comparable” securitized assets. See http://www.bis.org/bcbs/publ/d304.pdf.
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provide buyers with more and/or better information about sellers’ intrinsic types.33

To study the effects of these changes, we introduce a noisy public signal s ∈ {0, 1} about the quality of

each seller.34 The signal is informative, so that Pr(s = 1|h) = Pr(s = 0|l) > 0.5. Since the signal is publicly

observed, the buyers may condition their offers on it, i.e., they offer separate menus for sellers with s = 0

and s = 1. Thus, the economy now has two subgroups, j ∈ {0, 1}, with the fraction of high-quality sellers

in subgroup j given by

µhj =
µh Pr(s = j | h )

µh Pr(s = j | h ) + µl (1 − Pr(s = j | l ))
.

Note that the average across subgroups is equal to the unconditional fraction of high types, i.e., E[µhj] =

µh. The equilibrium outcome for each subgroup can be constructed using the procedure in Section 4 with

the appropriate µhj. Welfare is then given by the average welfare across subgroups, i.e., E[W(π,µhj)].

When buyers do not have any additional information (or, equivalently, are not permitted to condition

their offers on the signal), welfare is simply W(π, E[µhj]). Hence, whether the signal increases or de-

creases welfare, respectively, depends on whether W(π,µh) is convex or concave in µh in the relevant

region.

Before proceeding, two comments are in order. First, our focus is on the effect of a small increase in the 

information available to buyers; that is, we are interested in signals that induce a local mean-preserving 

spread around µh. Additional information of sufficiently high quality always improves welfare—for 

example, if buyers receive a perfect signal about sellers’ types, all gains from trade are realized—but this 

is not a very interesting or realistic experiment. Second, we focus on the region with µh < µ0, so that φl > 

0, which is more tractable and shows interesting interactions between competition and additional 

information.35 Moreover, in this region, W is linear in µh when π = 0 or π = 1. Hence, imposing 

monopsony or perfect competition would lead us to the conclusion that additional information has no 

effect on welfare.

Welfare and Information. Proposition 16 shows that W has a strictly convex region when π is suffi-

ciently low, implying that more information is beneficial when markets are relatively (but not perfectly)

uncompetitive. Alternatively, when markets are relatively (but not perfectly) competitive, W has a

strictly concave region, implying that more information actually reduces welfare.

33See, e.g., Chatterjee et al. (2011) and Einav et al. (2013) for a description of how the emergence of standardized scoring
systems in credit markets have radically changed lenders’ ability to assess a borrower’s creditworthiness.

34The restriction to a binary signal is only for simplicity. It is easy to introduce richer information structures.
35Numerical simulations suggest that additional information always reduces welfare when µh > µ0.
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Proposition 16. There exist π,π ∈ (0, 1) such that: (i) for all π ∈ (0,π), there exists 0 < µ
h
< µh < µ0 such

that W is strictly convex on the interval [µ
h

,µh]; and (ii) for all π ∈ (π, 1), there exists 0 < µ ′
h
< µ ′h < µ0 such

that W is strictly concave on the interval [µ ′
h

,µ ′h].

To see the intuition behind Proposition 16, recall from the previous subsection that trade with the

high-quality seller (and thus welfare) is governed by the interaction of the incentive effect and the relative

profit (or composition) effect. The consequences of more information can be understood in terms of these

two forces, too, which depend on the severity of adverse selection. In particular, a lower φl drives down

the first term in (25), which encourages more competition for low-quality sellers and, hence, boosts

trade and welfare. Now, from (17), we see that φl is a concave function of µh. Since the additional

signal induces a mean-preserving spread of µh, it results in a lower φl on average, which, ceteris paribus,

increases trade. This mechanism makes more information desirable. The effect from relative profits goes

in the opposite direction. In equilibrium, milder adverse selection raises profits from high types relative

to low types, which increases U ′h and hence decreases trade. Close to monopsony, since the incentive

effect dominates, more information raises welfare. The opposite happens when π is close to 1 and the

effect on relative profits dominates.

6 The Model with Many Types

We now extend our analysis to the case with an arbitrary, finite n umber o f s eller t ypes. We focus our 

attention on equilibria where all offers are separating menus. We do so for two reasons. First, in the 

case of N = 2, this region yields some of the most interesting results—such as the nonmonotonicity of 

welfare in π—and we want to confirm that these results are true in a more general setting. Second, in the

equilibrium with all separating menus, the monotonicity constraints are slack (xi < xi+1), which is the 

most commonly studied case in the mechanism design literature.36 We first provide a method for 

constructing such a separating equilibrium and then use the constructed equilibrium to demonstrate 

that the welfare implications from the model with two types extend to the general case of N > 2.

Suppose there are N > 2 types, with buyers and sellers deriving utility vi and ci, respectively, per

unit from a good of type i ∈ N ≡ {1, ...,N}. The types are ordered so that v1 < v2 < ... < vN and

c1 < c2 < ... < cN, and there are gains from trading all types of goods, i.e., vi > ci for all i ∈ N. The

distribution of types is summarized by the vector (µ1, . . . ,µN), with
∑
i∈N µi = 1. As in our benchmark

model, sellers (of all types) are privately informed about the quality of their good and receive two offers

36See, e.g., Fudenberg and Tirole (1991).
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with probability π and one offer with probability 1 − π.

Equilibrium Properties. The definition of strategies and a (symmetric) equilibrium are identical to 

those in the model with two types, and, hence, we omit them for brevity. We begin our analysis, 

in Lemma 17 below, by establishing that buyers’ offers never distort the quantity traded with the 

lowest type of seller, and that local incentive constraints always bind “upward” i.e., equilibrium offers 

always leave a type i seller indifferent between his contract and the one intended for type i + 1. As a 

result, abuyer’s offer can again be summarized by the indirect utilities it delivers to each type i ∈ N.

Lemma 17. For almost all equilibrium menus:

1. There is full trade with the lowest type, so that x1 = 1, and the local incentive constraints are binding

upward, so that

ti + ci (1 − xi) = ti+1 + ci (1 − xi+1) for all i = 1, 2.....N− 1;

2. Each menu can be summarized by a utility vector u = (u1, · · · ,uN) with ui > ci ∀ i and

1 >
uN − uN−1

cN − cN−1
> · · · > u2 − u1

c2 − c1
> 0, (28)

with the corresponding quantities and transfers given by

x1 = 1, xi = 1 −
ui − ui−1

ci − ci−1
, i = 2, 3.....N (29)

t1 = u1, ti = ui −
ci

ci − ci−1
(ui − ui−1) , i = 2, 3.....N.

Given these results, we can recast each buyer’s problem in terms of the utility vector u. In particular,

given a family of marginal distributions Fi(ui) for i ∈ N, each buyer chooses a vector u to solve

max
ui>ci

N∑
i=1

µi (1 − π+ πFi (ui))Πi (ui−1,ui) (30)

subject to the monotonicity constraints in (28), where (in a slight abuse of notation) profits per trade

with a seller of quality i are given by

Π1 (u1) = v1 − u1,

Πi (ui−1,ui) = vi −
vi − ci−1

ci − ci−1
ui +

vi − ci
ci − ci−1

ui−1, for all i = 2.....N. (31)

The program in (30) resembles a standard mechanism design problem, where the binding incentive

constraints are substituted into the profit functions in (31). The monotonicity constraints in (28) are

necessary to ensure that local incentive compatibility implies global incentive compatibility.
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We now formally define a separating equilibrium, provide a characterization and a method for con-

structing such equilibria, and then use numerical examples to study their normative properties.

Definition 18. An equilibrium is separating if the utility vector u associated with any equilibrium menu solves

the relaxed problem of maximizing the objective in (30) ignoring the monotonicity constraints in (28).

As a first step, in the conjectured equilibrium, one can use an induction argument to extend Propo-

sition 3, establishing that all the distributions Fi (ui) are continuous with connected support. Since

the profit function is strictly supermodular, any separating equilibrium must satisfy the strict rank-

preserving property. The following proposition summarizes.

Proposition 19. If φ1 = 1 − µ2
µ1

v2−c1
c2−c1

6= 0, then, in any symmetric separating equilibrium,

1. For all i ∈ N, Fi (·) has a connected support and is continuous.

2. There exists a sequence of strictly increasing real-valued functions {Ui (u1)}
N
i=2 such that the utility vector

associated with any equilibrium menu z satisfies:

u (z) = (u1 (z) ,U2 (u1 (z)) ,U3 (u1 (z)) , · · · ,UN (u1 (z))) . (32)

As in the model with two types, Proposition 19 greatly simplifies the construction of separating

equilibria: it implies that we only need to characterize the distribution of offers to the lowest type,

F1 (u1), together with the sequence of functions {Ui (u1)}
N
i=2.37 The equilibrium distribution of utilities

can then be derived from the fact that all types have the same ranking across equilibrium menus, i.e.,

Fi (Ui (u1)) = F1 (u1) for all i = 2, ...,N.

Equilibrium Construction. We now illustrate how to construct a separating equilibrium. 

Differentia-bility of the profit function in (30) implies that any separating equilibrium must satisfy

πfi (Ui (u1))

1 − π+ πFi (Ui (u1))
Π1 (u1) = φi (33)

πfi (Ui (u1))

1 − π+ πFi (Ui (u1))
Πi (Ui−1 (u1) ,Ui (u1)) = φi for all i = 2, ...,N, (34)

37This proposition relies on the assumption that the marginal cost of transfers to the lowest type net of any benefits aris-
ing from binding incentive constraints, φ1, is non-zero. As in the two-type case, this assumption is required to show that
equilibrium distributions do not have mass points.
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where φi, the marginal cost of increasing the utility of a seller of type i, is given by

φ1 = 1 −
µ2

µ1

v2 − c2

c2 − c1

φi =
vi − ci−1

ci − ci−1
−
µi+1

µi

vi+1 − ci+1

ci+1 − ci
, for all i = 2, · · · ,N− 1

φN =
vN − cN−1

cN − cN−1
.

Equation (33) implies that F1 must satisfy

πf1 (u1)

1 − π+ πF1 (u1)
=

φ1

v1 − u1
. (35)

Since the strict rank-preserving property implies that each Ui must satisfy Fi(Ui(u1)) = F1(u1), it must

be the case that U ′i(u1)f1(Ui(u1)) = f1(u1). Substituting this result into (34) implies that the equilibrium

functions Ui must satisfy the set of differential equations:

U ′i (u1) =
φ1

φi

Πi (Ui−1 (u1) ,Ui (u1))

v1 − u1
for all i = 2, · · · ,N. (36)

The system of differential equations (35) and (36) are ordinary first order differential equations; to

complete the characterization, we need only provide the appropriate boundary conditions. As in the

two-type model, these conditions depend critically on the marginal costs, (φ1, . . . ,φN), and are closely

tied to the outcome under monopsony. The following result shows that the solution to a monopsonist’s

problem can be represented in the form of a threshold type.

Lemma 20. Let J denote the largest integer i ∈ {1, 2...N} such that

J−1∑
i=1

µiφi < 0, (37)

with J = 1 if
∑k
i=1 µiφi > 0 for all k ∈ {1, 2....N}. The solution to a monopsonist’s problem is to set ui = cJ for

i 6 J and ui = ci for i > J.

Intuitively, the accumulated marginal cost of trading with the first J types is negative (
∑J−1
i=1 µiφi <

0), so they are pooled. In contrast, for the remaining types, the information rents outweigh the potential

gains, so the monopsonist chooses not to trade with them.38 The next result links this threshold J to the

best and worst menu when π > 0.

Lemma 21. Let J be as defined in Lemma 20. Then, in any equilibrium, the best menu has ui = uJ for i < J, and

the worst menu has ui = ci for all i > J.

38For brevity, we ignore the nongeneric case in which the inequality in (37) is satisfied with equality.
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To see the intuition, note that the best menu trades with probability 1, i.e., attracts all captive and

noncaptive sellers. Therefore, it cannot be profitable for that menu to separate types that a monopsonist

finds profitable to pool; if ui < uJ for some i < J, then increasing ui has no effect on the probability or

composition of trades but yields strictly higher profits (because the effective marginal cost of increasing

ui is negative). Similarly, it cannot be profitable for the worst menu to give any surplus to the types that

the monopsonist finds optimal to shut out completely; if such a menu offers more than ci to any type

i > J, the buyer can raise her profits simply by lowering that utility.

The system of differential equations (35)-(36), along with the boundary conditions described in

Lemma 21, describe necessary conditions for any separating equilibrium. By the Picard-Lindelöf theo-

rem, it has a unique solution. In Appendix A.10.5, we provide analytical expressions for this solution.

To ensure that this solution is an equilibrium, one need only verify that the monotonicity constraints

(28) are satisfied for every u1 ∈ Supp(F1).

Finally, we solve two numerical examples using the method described above. The two cases both 

have N = 4 but differ in the marginal cost vector, (φ1, ...φN).39 In the first case, J = 1, so the monopsonist 

only trades with the lowest type. In the second case, J = 2. We use these cases to demonstrate the 

robustness of the welfare results in section 5.2. In Figure 5, we plot expected trade for types 2 through 4 

(recall that x1 = 1 always) as a function of π. They show a nonmonotonic relationship between expected 

trade and competition. In the first case (left panel), in which the monopsonist only trades with type 1, 

trade by all three types is hump-shaped. This is analogous to the case with φl > 0 in the two-type model. 

In the second case (right panel), however, trade with one of the types (type 2) is monotonically decreasing 

in π. This is similar to the case with φl < 0 in the two-type model. In both cases, these patterns imply that 

ex-ante welfare is maximized at π < 1.

7 Additional Extensions and Robustness

In this section, we examine a few additional extensions of our framework, both to ensure the robustness

of our results and to demonstrate that our framework is amenable to more applied work. First, we

relax our assumption of linear utility to analyze the canonical model of insurance under private infor-

mation. Second, we allow the degree of competition to differ across sellers of different quality. Lastly,

we show how to incorporate additional dimensions of heterogeneity, including horizontal and vertical

39For both cases, we assume a uniform distribution µi = 0.25 for all i, with valuations ci = 1, 2, 3, 4 and vi = ciδ+ 0.5. In
case 1, δ = 1.2 and in case 2, δ = 1.3. In each case, we solve the system (35)-(36) and verify that the monotonicity constraints
are satisfied.
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Figure 5: Expected trade and competition when N = 4 and J = 1 (left panel) or J = 2 (right panel)

differentiation.

7.1 A Model of Insurance

To start, we analyze a canonical model of insurance under private information, along the lines of Roth-

schild and Stiglitz (1976), and show that our main results—in particular, the structure of equilibrium 

menus and the nonmonotonicity of welfare with respect to the degree of competition—extend beyond 

the linear, transferable utility environment.

A unit measure of agents with strictly increasing, strictly concave utility functions w (c) face idiosyn-

cratic income risk.40 Their income in normal times is y, but they also face the risk of an “accident,”

which reduces their income by d. The accident itself is observable and contractible, but the probability

of its occurrence, denoted θj, j ∈ {b,g} , is private information. A fraction µb of agents are of type b and

face a higher risk of accident than type g agents, i.e., θb > θg. Principals (i.e., the insurance providers)

are risk-neutral, which implies that gains from trade are strictly positive for both types. The competitive

structure is exactly the same as in the baseline model: a fraction 1−π of agents receive one offer and the

remainder receive two.

A contract consists of a premium and a transfer to the agent in the event of an accident. Since trading

is exclusive and the accident is observable, we can also think of the contract as directly offering a utility

level in the normal and accident states. As before, we consider menus with two contracts, one for each
40Note that, in this application, the “buyers” of insurance are the ones with private information. To avoid confusion, we

switch to a principal-agent description.
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type, i.e., z =
(
unb ,uab

)
,
(
ung ,uag

)
such that incentive and participation constraints are satisfied:

(
ICj
)
: θju

a
j +

(
1 − θj

)
unj > θju

a
−j +

(
1 − θj

)
un−j,(

PCj
)
: θju

a
j +

(
1 − θj

)
unj > θjw (y− d) +

(
1 − θj

)
w (y) j ∈ {b,g}.

To solve for the equilibrium, we follow the same steps as in Section 4. The first step is to obtain the

utility representation. It is straightforward to prove that, in all equilibrium menus, the type b agent is

fully insured and (ICb) binds. This allows us to summarize equilibrium menus with a pair of expected

utilities, one for each type, (ub,ug), with allocations given by the solution to the following system of

equations:

ub = uab = unb , ub = θbu
a
g + (1 − θb)u

n
g , ug = θgu

a
g + (1 − θg)u

n
g . (38)

In a separating menu, the principal offers type g agents less than full insurance: uag < ung such that

(ICb) binds. Define C (u) ≡ w−1 (u) to be the principal’s cost of providing a utility level u. Note that

C′ (u) ,C′′ (u) > 0. Then, the objective of the principal is described by (11), where the type-specific profit

functions satisfy

Πb (ub,ug) = y− θbd−C (ub) ,

Πg (ub,ug) = y− θgd− θgC
(
uag
)
− (1 − θg)C

(
ung
)

.

Since w is strictly increasing and concave, we can show that

dΠg (ub,ug)
dub

> 0, and
dΠg (ub,ug)
dugdub

> 0 .

The first inequality shows the effect of incentives: more surplus to type b agents relaxes their incentive

constraint, allowing the principal to earn higher profits from type g agents. The second inequality shows

that the marginal benefit of increasing the utility of type g agents rises with the utility offered to type b

agents, implying the strict supermodularity of the profit function. In other words, the complementarity

that was at the heart of the strict rank-preserving property in the linear model is present in this version

as well. Using this property, we can extend the arguments in Proposition 3, implying that the marginal

distributions Fj, j ∈ {b,g} do not have any flat portions or mass points. Therefore, Theorem 1 applies, i.e.,

equilibria are strictly rank-preserving and can therefore be described by a distribution over utilities to

type b agents, Fb(ub), and a strictly increasing function Ug(ub). In Appendix A.11, we use the methods

from Section 4 to derive the system of differential equations that characterize these functions.

38



Turning now to our normative results, we consider the implications of competition for welfare. For

brevity, we restrict attention to the region where all menus are separating and do not involve cross-

subsidization. In this case, the consumption of type g agents necessarily varies with the state; this

imperfect insurance is the analogue of distortions in the quantity traded in the baseline model. The

associated resource costs are thus a natural measure of the efficiency losses (relative to a full information

benchmark) in this setting. For a menu offering ub to type b agents, this loss is given by

L(ub) = C (Ug(ub)) −
[
θgC

(
Uag(ub)

)
+ (1 − θg)C

(
Ung (ub)

)]
, (39)

where Ug,Uag , and Ung are equilibrium policy functions. Average losses in the economy are then

L(π) ≡ (1 − π)

∫
L(ub)dFb(ub,π) + π

∫
L(ub)dFb(ub,π)2 . (40)

In Appendix A.11, we show, using a numerical example, that L is U-shaped in ub, which then implies

that L(π) is minimized at an interior value of π. Thus, in markets for insurance, increasing competition

among providers can be detrimental for welfare.

7.2 Differential Competition Across Types

In our baseline model, we assume that the probability a seller receives one or two offers is the same for 

both types. If we interpret this probability as the outcome of an endogenous choice by the sellers, then 

this restriction is potentially important; after all, high- and low-quality sellers typically have different 

incentives to the costly search for more offers. In this subsection, we relax this assumption and allow π to 

vary across types, so that the probability a type j seller is captive is given by 1 − πj. We will show that 

both the structure of the equilibrium and its normative properties remain largely unchanged, with the 

caveat that, for some parameter values, the equilibrium distribution has mass points. For brevity, we 

restrict attention to the φl > 0 case, where all equilibrium menus are separating and cross-subsidization 

does not occur.

We first consider the case where πh > πl. In this case, the results in Proposition 3 go through

unchanged and, therefore, the distribution functions Fl and Fh have continuous support and no mass

points. This implies that the equilibrium satisfies the strict rank-preserving property and all menus

attract the same fraction of noncaptive sellers. Next, we consider the case with πl > πh. In this case,

both distributions still have continuous supports, but Fl has a mass point if πl is sufficiently large. The

following proposition fully characterizes the unique equilibrium and provides a condition for mass point

equilibria.
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Proposition 22. If 1−πl
1−πh

< 1−φl, then the unique equilibrium Fl has full mass at vl and Fh is characterized by

(1 − πh + πhFh(uh))Πh (vl,uh) = (1 − πh)Πh (vl, ch) . (41)

If 1−πl
1−πh

> 1 −φl, then the unique equilibrium Fl satisfies

πlfl(ul)

1 − πl + πlFl(ul)
Πl(ul) = 1 −

1 − πh + πhFl(ul)

1 − πl + πlFl(ul)

(
µh
µl

)
vh − ch
ch − cl

(42)

and Uh is determined by the equal profit condition.

Equation (42) is similar in structure to (20). The key difference is that the right-hand side, which again

measures the (net) marginal cost of providing a unit of surplus to the low type, has an additional term

that adjusts for the differential probability that an offer is accepted by high types relative to low types.

For example, when πh > πl, this cost is large when ul is small: the benefit from relaxing incentive

constraints is weak because low offers are rarely accepted by high-quality sellers when they are more

likely to be captive. As ul grows, however, these benefits grow as well, and the right-hand side shrinks

to reflect a smaller marginal cost of providing surplus to low types.

The construction of equilibrium follows the strategy in Section 4. The ordinary differential equation 

in (42), with the boundary condition Fl(cl) = 0, can be solved for Fl. Given Fl, the equal profit condition 

pins down Uh. The properties of the equilibrium—both positive and normative—are also similar to the 

baseline model. In particular, xh is nonmonotonic in ul,which, as before, has interesting implications 

for the relationship between welfare and competition.

W

πl
0 1

Low πh

High πh

W

πh0 1

High πl

Low πl

Figure 6: The effect of varying competition on welfare for high- (left panel) and low-quality (right panel) sellers

Figure 6 illustrates the effects of varying competition for each type separately. The left panel varies

πh, holding πl fixed, and shows that more competition for high-quality sellers always reduces welfare;
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intuitively, more surplus to high-quality sellers tightens the incentive constraints and reduces trade. The 

right panel varies πl, holding πh fixed, which has two effects (exactly as in Section 5.2). First, it increases 

surplus to low-quality sellers, which relaxes incentive constraints and increases trade with high-quality 

sellers. Second, it makes low-quality sellers relatively less attractive to buyers, inducing them to compete 

more aggressively for the high-quality seller, reducing trade. These two competing forces lead to a non-

monotonic relationship between πl and welfare, provided πh is sufficiently high.41

7.3 Differentiation and Multidimensional Heterogeneity

In this section, in order to enhance the applicability of our framework to applied work, we introduce

various types of additional heterogeneity: across buyers, across contracts, and across sellers. In various

ways, these generalizations break the stark relationship between a seller’s type, the offer she accepts, and

the rank of that offer within the distribution of all offers. The cost of these generalizations is some degree

of tractability, though we argue that, in most cases, the properties and characterization of equilibria are

very similar to the baseline framework. For brevity, we restrict attention to the region of the parameter

space where almost all equilibrium menus are separating and not cross-subsidizing.

Horizontal Differentiation Across Buyers. Consider first the possibility that buyers are 

horizontally differentiated. Specifically, as in the discrete choice model of McFadden (1974), we 

assume that the payoff to a seller of type i from a contract (x, t) offered by buyer k is

uik = (1 − x) ci + t+ εk = ui + εk ,

where εk is a buyer-specific preference shock drawn from a continuous distribution G with support

[ε, ε̄]. Note that ε is the same for both seller types, so it has no effect on the incentive constraints. Hence,

we may once again represent each equilibrium menu by a utility pair (ul,uh). A captive seller accepts

this menu if uik is greater than her outside option, ci, which occurs with probability

F̃ci (ui) =

∫ ε̄
ci−ui

dG(ε) = 1 −G (ci − ui) . (43)

A noncaptive seller of type i accepts this menu if ui+ε > max(u′i+ε
′, ci), which occurs with probability

F̃nci (ui) =

∫ ūi
ui

∫ ε̄
ci−ui

(∫ui+ε−u′i
ε̄

dG
(
ε′
))

dG (ε) dFi
(
u′i
)

(44)

=

∫ ūi
ui

∫ ε̄
ci−ui

G
(
ui + ε− u

′
i

)
dG (ε) dFi

(
u′i
)

,

41When πh is low, we enter the region with mass points before the second (negative) effect begins to dominate. Since a mass
point equilibrium puts full mass at vl, increasing πl beyond this point has no effect on welfare.
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where Fi is the marginal distribution of utilities offered to type i sellers in equilibrium. We can write the

buyer’s problem as

max
u ′h, u ′l

∑
i

[
(1 − π) F̃ci

(
u ′i
)
+ πF̃nci

(
u ′i
)]︸ ︷︷ ︸

Mi(u ′i)

Πi
(
u′l,u

′
h

)
. (45)

In a separating equilibrium, optimality with respect to ul requires

ml (ul)

Ml (ul)
(vl − ul) = φl. (46)

In other words, the link between the trading probability and the utility offered to the low-quality seller

is exactly the same as in our baseline framework, and all of our results go through with respect to the

key equilibrium objects Ml and Mh. The only caveat is that the mapping to the underlying distribution

of offers Fl and Fh, which are informative about prices and allocations, typically requires numerical

methods to solve.42

Horizontal Differentiation Across Contracts. The extension above allows for the possibility that a seller

accepts a contract from the “wrong” buyer, i.e., accepts ui even though a contract u′i > ui was available. 

In this section, we allow for the possibility that a seller accepts the “wrong” contract within a menu, i.e., 

accepts u−i even though her type is i. In particular, suppose that a fraction δ of low-quality sellers accept 

the contract intended for a high-quality seller. It is possible to microfound this as a form of “tremble,” 

or as arising from other unmodeled contract features that cause some low-quality sellers to prefer the 

contract with lower quantity and higher price.43 For example, the high-price contract might carry other 

benefits, such as better customer service, that are valued by some low-quality sellers (but not others).

Let ṽh ≡ µhvh+µlδvl
µh+µlδ

be the average value (to the buyer) of assets held by agents who take the contract

intended for the high type. We assume that δ is sufficiently small so ṽh > ch. The expected profits of

the buyer, conditional on trade, are then given by Π̃h (ul,uh) = ṽh −
(
ṽh−cl
ch−cl

)
uh +

(
ṽh−ch
ch−cl

)
ul. As in

our baseline model, the FOC for ul and the equal profit condition pin down Fl and Uh:

πfl (ul)

1 − π+ πFl (ul)
(vl − ul) = 1 −

µh + µlδ

µl (1 − δ)

(
ṽh − ch
ch − cl

)
≡ φ̃l, (47)

(1 − π)µlδ (vl − cl) = (1 − π+ πFl (ul))
[
µl (1 − δ) (vl − ul) + (µh + µlδ) Π̃h (ul,uh)

]
. (48)

Note that these equations are very similar to (20)–(21), with Π̃h and φ̃l replacing Πh and φl. Accord-

ingly, the characterization and other results in the preceding sections directly extend.
42The differential equation in (46), along with the equal profit condition and the system of integral equations in (43) − (44) 

must be solved jointly for Fi, and this system is only analytically tractable under special assumptions on the distribution G.
43For simplicity, we make two additional assumptions. First, a captive low-quality seller still chooses the more attractive

menu, even when she takes the contract intended for the high-quality seller. Second, we assume that the buyer does not (or
cannot) try to use contract terms to separate out these low-quality sellers.
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Vertical Differentiation Across Buyers. Suppose now that sellers attach a higher value to trading with

certain buyers. To be more precise, suppose there are two buyers, k ∈ {1, 2}, and that the utility of a type

i seller from accepting a contract (x, t) from buyer k is given by ci (1 − x) + t+ Bk, where B1 ≡ B > 0

and B2 is normalized to zero.44 This implies that the cost of delivering utility to sellers is lower for

buyer 1 or, equivalently, his profits are higher than those of buyer 2, i.e., Π1
i (ul,uh) = Π2

i (ul,uh) + B.

Not surprisingly, in this environment, the equilibrium distribution of menus is also asymmetric. Let

Fki (ui) , k ∈ {1, 2} denote the marginal distribution of utilities offered by buyer k to type j sellers.

In Appendix A.13, we characterize an equilibrium in which these distributions satisfy the strict rank-

preserving property, except at the lower bound of the support, where F2
i has a mass point.45

Multidimensional Seller Heterogeneity.Finally, our baseline framework posits a tight connection be-

tween the valuations of the seller and the buyer. While this is a natural assumption when sellers are 

heterogeneous along a single dimension—asset quality—it is also natural to consider the case in which 

sellers have heterogenenous preferences as well.46 A simple way to incorporate this additional hetero-

geneity into our analysis is to assume that a seller’s type is a tuple (c, ṽ) , with c ∈ {ch, cl} denoting 

the seller’s valuation for her asset and ˜v ∈ {˜vh, ˜vl} denoting the buyer’s valuation. This allows for the 

possibility that some high- (low-) quality assets are held by sellers who, for idiosyncratic reasons, have

a low (high) valuation for them. In an asset market interpretation, for example, this could arise from

heterogeneity in discount rates or liquidity needs. Let µij denote the proportion of sellers of type (ci, ṽi).

We can show that it is not possible for buyers to separate sellers with the same c but different ṽ′s. Let

µi =
∑
i µij denote the fraction of sellers with valuation ci, i ∈ {h, l} and vi =

∑
i µijṽi
µi

denote the average

value (to the buyer) of the assets held by sellers of type i. Assuming that gains from trade are positive,

so that ci < vi, it is easy to see that our analysis of the baseline model goes through exactly. In other

words, additional preference heterogeneity changes the interpretation of buyer values in our baseline

model, but otherwise leaves the analysis unchanged.

44Equivalently, and more consistent with our earlier interpretation, one could imagine a measure of buyers, with a fraction
of each type k ∈ {1, 2}. The simplification here implies that a noncaptive seller will always have one offer from a type 1 buyer
and one from a type 2 buyer, though this could be relaxed.

45Our analysis requires one additional assumption: a seller who is indifferent between two menus chooses the one offered
by buyer 1. The resulting system of differential equations can be solved numerically to obtain the equilibrium distributions.

46See, for example, Finkelstein and McGarry (2006), Chang (2012), and Guerrieri and Shimer (2014b).
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8 Conclusion

In their survey of the literature on insurance markets, Einav et al. (2010a) note that, despite substantial

progress in understanding the effects of adverse selection,

“there has been much less progress on empirical models of insurance market competition, or
on empirical models of insurance contracting that incorporate realistic market frictions. One
challenge is to develop an appropriate conceptual framework. Even in stylized models of
insurance markets with asymmetric information, characterizing competitive equilibrium can
be challenging, and the challenge is compounded if one wants to allow for realistic consumer
heterogeneity and market imperfections.”

In this paper, we overcome this challenge and develop a tractable, unified framework to study adverse 

selection, screening, and imperfect competition. We provide a full analytical characterization of the 

unique equilibrium and use it to study both positive and normative issues.

Going forward, our framework can be exploited and extended to address a variety of important 

issues, both applied and theoretical. On the applied side, our equilibrium provides a new structural 

framework that can be used to jointly identify the extent of adverse selection and imperfect competition 

in various markets, and to study how the interaction of these two frictions affects the distribution of 

contracts, prices, and quantities that are traded. On the theoretical side, there are several obvious 

extensions to pursue. For example, one natural extension is to endogenize the number of offers buyers 

receive by allowing them to solicit offers at a fixed cost, which could help us understand how the 

severity of adverse selection can affect market structure. Another natural exercise is to study the analog 

of our model with nonexclusive contracts; though this would complicate the analysis considerably, it 

would also make our framework suitable to analyze certain markets where exclusivity is hard to enforce. 

We leave all of these exercises for future work.
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Appendix

A Proofs

A.1 General mechanism

Here we show that a buyer cannot gain by offering a deterministic mechanism with more than two
contracts in an effort to screen sellers with different outside offers. This ensures that, within the set of
deterministic mechanisms, restricting attention to menus that consist of only two contracts is without
loss of generality. To show this, we first augment the type space by including competing offers. A
seller’s type can thus be represented by (i, z), where i denotes the quality of her good and z denotes her
alternate offer. We adopt the convention that z = 0 if a seller is captive.

A deterministic direct mechanism47 is a mapping from the seller’s reported type to an offer (x(i, z), t(i, z)).
The following result shows that, in an optimum, outcomes cannot vary for sellers who differ only in their
competing offers.

Claim 23. x(i, z) = x(i, z ′) = x(i) and t(i, z) = t(i, z ′) = t(i).

Proof. Consider two offers (x(i, z), t(i, z)) and (x(i, z ′), t(i, z ′)). If both offers are accepted with positive
probability in equilibrium, incentive compatibility requires that they must deliver the same level of
utility to the seller, i.e.,

(1 − x(i, z))ci + t(i, z) = (1 − x(i, z ′))ci + t(i, z ′) = ui , (49)

for some ui. If one of them yields a lower utility than the other, then the seller who accepts the former
stands to gain by changing her report of z. But, these two offers must also be equally profitable for the
buyer, i.e.,

x(i, z)vi − t(i, z) = x(i, z ′)vi − t(i, z ′) = Πi , (50)

for some Πi. Otherwise, the buyer can increase profits by simply replacing the less profitable one with
the other. Since both deliver the same utility to a seller with quality i, this change has no effect on
incentives to report z truthfully. Thus, both offers must solve the same linear system (49) − (50), and
therefore must be identical. �

A.2 Proof of Lemma 1

Proof. Both results are similar to existing results (see, for example, Dasgupta and Maskin (1986)), and
thus we keep the exposition brief. To establish that xl = 1 in all equilibrium menus, suppose by way
of contradiction that some equilibrium menu z = (zl, zh) has xl < 1 and tl ∈ R+, yielding a low
quality seller utility ul. Now, consider a deviation z′ = (z′l, zh) with x′l = xl + ε for ε ∈ (0, 1 − xl] and
t′l = tl + εcl. Note that u′l = ul, so that zl and z′l are accepted with the same probability, but

xlvl − tl < xlvl − tl + ε(vl − cl) = x
′
lvl − t

′
l,

so that z′l earns the buyer a higher payoff when it is accepted, implying existence of a profitable deviation.
Therefore, no equilibrium menu features xl < 1.

To establish that a low-quality seller’s incentive compatibility constraint binds in all equilibrium
menus, suppose by way of contradiction that some equilibrium menu z = (zl, zh) has tl > th +
cl(1 − xh). Now, consider a deviation z′ = (zl, z′h) with x′h = xh + ε and t′h = th + εch for ε ∈(

0, tl−th−cl(1−xh)
ch−cl

]
, which is a nonempty interval by assumption. The upper bound on ε ensures that

47Here, we invoke a version of the revelation principle for deterministic mechanisms derived by Strausz (2003).
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the incentive compatibility constraint on type l sellers is not violated. In addition, note that u′h = uh, so
that zh and z′h are accepted with the same probability, but

xhvh − th < xhvh − th + ε(vh − ch) = x
′
hvh − t′h,

so that z′h earns the buyer a higher payoff when it is accepted, implying existence of a profitable devia-
tion. Therefore, in all equilibrium menus, the type l seller’s incentive constraint binds. �

A.3 Proof of Proposition 3

We prove the proposition through the following sequence of lemmas.

Lemma 24. Fh (·) has no flats.

Proof. Suppose by way of contradiction that Fh (·) is flat in an interval (uh1,uh2). In other words,
there exists (ul2,uh2) ∈ Supp (Fl)× Supp (Fh) such that, for some ε̄ > 0, the distribution Fh satisfies
Fh (uh2) = Fh (uh2 − ε) for all ε ∈ [0, ε̄]. We prove that there must exist a profitable deviation. The
particular deviation we construct depends on whether ul2 < uh2 or ul2 = uh2 and whether Fl is flat on
an interval containing ul2 or not. We consider each relevant case in turn:

1. Suppose that ul2 < uh2. In this case, a deviation to (ul2,uh2 − ε
′) with ε′ < ε is feasible and must

be profitable because such a deviation increases profits earned from trading with h types but does
not change the fraction of h types attracted.

2. Suppose that ul2 = uh2 and Fl is flat below ul2. In this case, a deviation of the form (ul2 − ε
′,uh2 − ε

′)
for a small but positive ε′ is profitable since it increases profits per trade (from both l and h type
sellers) but does not change the fraction of either type attracted.

3. Suppose ul2 = uh2 and Fl is not flat below ul2. Such a situation is depicted in Figure 7. Point
A represents the contract (ul2,uh2). Since Fh is flat by assumption, the area between the two red
dashed lines must not contain any equilibrium menu. Since Fl is not flat below ul2 by assumption
and there are no menus in the area between the red dashed lines, an equilibrium contract must
exist in the region where the point D is located; recall, since uh > ul, the point D cannot lie
below the lower red dashed line. Let point D represent such an equilibrium menu. In addition,
let B represent a menu with the same offer to the low type as D but offers uh2 to the high type.
Similarly, let C represent a menu with the same offer to the low type as A and the same offer to
the high type as D.

For any distributions, Fl and Fh, the profit function, Π(ul,uh) is weakly supermodular so that

ΠA +ΠD 6 ΠC +ΠB.

Since bothD and A are offered in equilibrium, we must have that ΠA = ΠD > ΠC,ΠB. This implies
that ΠA = ΠB. Additionally, since Fh is flat between B and E (and these menus offer the same ul),
it must be that ΠE > ΠB. Therefore, this is a profitable deviation.

�

Lemma 25. Fl (·) has no flats.

Proof. Suppose by way of contradiction that Fl is flat in an interval (ul1,ul2). Without loss of generality,
we can complete the measure Φ to include menus with first element given by ul1 and ul2. Since the
profit function is weakly supermodular, then the policy correspondence must be weakly increasing. Now
consider the policy correspondences Uh (ul1) and Uh (ul2). Note that Cl (Uh (ul1)) and Cl (Uh (ul2))
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Figure 7: A graphical illustration of why Fh cannot be flat.

cannot be disjoint—if they were, then there would be a flat in the support of Fh, which contradicts
Lemma 24. Let ûh be a common value in the two sets. We present a depiction of such a situation in
Figure 8 below.

ul

uh

45◦

bb b
BA

ul1 ul2

ûh

Figure 8: A graphical illustration of why Fl cannot be flat.

Holding ûh fixed, the profit function must be linear over the set (ul1,ul2) since Fl (·) is flat by
assumption. Therefore, all the menus on the line AB must also deliver profits equal to equilibrium
profits. However, since profits earned from trading with h types are increasing in ul, the marginal
benefit of a change in uh is changing along the line AB. As a result, it is possible to construct an upward
or downward deviation along AB that increases profits, implying existence of a profitable deviation. �

Lemma 26. Φ has no mass point.

Proof. Suppose by way of contradiction that Φ has a mass point at the menu (ul,uh). Let m denote
the mass at this menu. Since for any such menu, a deviation of the form (ul + ε1,uh + ε2) for small ε1, ε2
(one of which is positive or negative) must be feasible, profits earned from the mass of sellers attracted
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to such deviation must be zero:

µlπ
m

2
Πl(ul) + µhπ

m

2
Πh (ul,uh) = 0.

If the menu (ul,uh) is interior to the constraint set—that is, if ch − cl > uh − ul > 0—then a simple
deviation along ul or uh will be feasible and profitable. However, it is possible that (ul,uh) is on the
boundary of the set and, as a result, not all deviations are feasible. There are two relevant possibilities:

1. Suppose that the menu with mass, (ul,uh), satisfies uh = ul + ch − cl. In such a case, the menu
features no trade with the high type. Therefore, it must be that Πh 6 0. Since equilibrium profits
are strictly positive, it must be that Πl > 0 . Hence, an infinitesimal increase in ul, which is feasible,
increases profits.

2. Suppose that the menu with mass, (ul,uh) satisfies uh = ul. Then (ul,uh) is a pooling menu.
Therefore, the profits from the high type must be positive. As a result, the buyer offering this
contract could increase profits with an infinitesimal increase in uh (which would attract a mass of
high types), while holding ul constant.

�

Lemma 27. Fh (·) does not have a mass point.

Proof. Suppose by way of contradiction that Fh has a mass point. From Lemma 26, we know that this
mass point could not have been created from a mass point in Φ. Therefore, if Fh has a mass point at ûh,
it must be that a positive measure set of the form {(ul, ûh)} exists. Figure 9, depicts this possibility.

ul

uh

45◦

b b b bb bûh

Figure 9: A graphical illustration of why Fh cannot have a mass point.

Note that at one of the points on the line, profits from the h type, Πh(ul, ûh) must be non-zero since
Πh is strictly increasing in ul. Therefore, a small deviation upward or downward increases profits; this
implies existence of a profitable deviation and yields the necessary contradiction. �

To show that Fl has no mass points, we make use of the strict supermodularity of the profit function,
which only relies on the continuity of Fh. We therefore provide a proof of the strict supermodularity of
the profit function here.
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Proof of Lemma 4. Suppose ul2 > ul1 and uh2 > uh1. Then, letting ξ1 ≡ vh−ch
ch−cl

> 0 and ξ2 ≡ vh−cl
ch−cl

>

0,

Π (ul1,uh2) −Π (ul1,uh1)

= µh {[1 − π+ πFh(uh2)]Πh(ul1,uh2) − [1 − π+ πFh(uh1)]Πh(ul1,uh1)}

= µh {[1 − π+ πFh(uh2)] [vh + ξ1ul1 − ξ2uh2] − [1 − π+ πFh(uh1)] [vh + ξ1ul1 − ξ2uh1]}

< µh {[1 − π+ πFh(uh2)] [vh + ξ1ul2 − ξ2uh2] − [1 − π+ πFh(uh1)] [vh + ξ1ul2 − ξ2uh1]}

= Π (ul2,uh2) −Π (ul2,uh1) ,

where the inequality follows from the fact that Fh is strictly increasing, and, hence,

πξ1(ul2 − ul1)[Fh(uh2) − Fh(uh1)] > 0.

�

Lemma 28. Fl is continuous except possibly at vl.

Proof. Suppose by way of contradiction that Fl is not continuous and thus has a mass point at some
ûl. Again, by Lemma 26, it must be that a positive measure set of the form S = {(ûl,uh)} exists. It is
immediate that Πl(ûl) = 0; otherwise, it would be profitable to increase or decrease ul by ε if Πl(ûl) > 0
or Πl(ûl) < 0, respectively. If Πl(ûl) = 0, then it must be ûl = vl. �

A.4 Proof of Proposition 10

Proof. We first show that the equilibrium allocations constructed in (20) and (21) are indeed separating
and interior. Our construction ensures that local deviations are not profitable. Below we prove that the
global deviations are not profitable as well.

Verifying Allocations Are Separating and Interior. Note that solution to the differential equation in 
(21) together with boundary condition Fl (cl) = 0, must satisfy

1 − π+ πFl (ul) = (1 − π) (vl − cl)
φl (vl − ul)

−φl . (51)

Therefore, from (21), Uh (ul) must satisfy

Uh (ul) =
1

µh
vh−cl
ch−cl

[
µhvh + µlvl − µlφlul − µl (vl − cl)

1−φl (vl − ul)
φl
]

.

For the allocation to be separating, we must verify that

ul + ch − cl > Uh (ul) > ul,∀ul ∈ Supp (Fl) (52)

where
Supp (Fl) =

[
cl, vl − (1 − π)

1
φl (vl − cl)

]
.

The second inequality in (52), Uh(ul) > ul, is satisfied if and only if

µhvh + µlvl > µl(vl − cl)
1−φl(vl − ul)

φl + ul (53)

for all ul ∈ Supp(Fl). Let H(ul) denote the right-hand side of (53). We argue that H(·) is strictly concave
and attains its maximum at a value u∗l ∈ [cl, vl] with H(u∗l ) < µhvh+µlvl, implying that (53) is satisfied
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for all ul ∈ Supp(Fl). To see this, note that

H′(ul) = −φlµl(vl − cl)
1−φl(vl − ul)

φl−1 + 1 (54)
H′′(ul) = φl(φl − 1)µl(vl − cl)1−φl(vl − ul)

φl−2 < 0, (55)

where the inequality in (55) is implied by the fact that 0 < φl < 1. Also, since φl < 1, H′(vl) = −∞ and
H′(cl) = 1 −φlµl > 0, so that the maximum of H(ul) is attained on the interior of [cl, vl].

The function H(ul) is maximized at u∗l given by

u∗l = vl − (φlµl)
1

1−φl (vl − cl)

with

H(u∗l ) = vl + (vl − cl)µ
1

1−φl
l φ

φl
1−φl
l [1 −φl] .

Since ch > vl and φl < 1, it is immediate that

(φlµl)
φl

1−φl < 1 6
(ch − cl) (vh − vl)

(vl − cl) (vh − ch)
,

which implies

(vl − cl)µl (φlµl)
φl

1−φl
µh
µl

vh − ch
ch − cl

< µh (vh − vl) .

Hence,

(vl − cl)µl (φlµl)
φl

1−φl (1 −φl) < µh (vh − vl)

and
max

ul∈[cl,vl]
H (ul) = H(u

∗
l ) = vl + (vl − cl)µl (φlµl)

φl
1−φl (1 −φl) < µh (vh − vl) + vl

as needed.
We now establish that the first inequality in (52) is true, which requires showing that

µhvh + µlvl − µlφlul − µl (vl − cl)
1−φl (vl − ul)

φl

µh
vh−cl
ch−cl

6 ul + ch − cl,

or, equivalently,

µhcl + µlvl 6 ul + µl (vl − cl)
1−φl (vl − ul)

φl , ∀ul ∈ Supp (Fl) ⊂ [cl, vl] . (56)

Since, the right side of (56) is a concave function, it takes its minimum values at the extremes of the
interval [vl, cl]. These values are given by vl and µlvl + µhcl, both of which are at least as large as the
left side of (56). Hence, (56) must be satisfied for all ul ∈ [vl, cl], as needed.

Global Deviations. Note that our conditions (20) and (21) imply that local deviations with respect to uh
and ul are not profitable. It, thus, remains to show that, for all

(
u′l,u

′
h

)
, Π
(
u′l,u

′
h

)
6 µl (1 − π) (vl − cl).

We consider two types of deviations:

1. Consider first deviation menus with u′h > maxSupp (Fh) = ūh. Such deviations attract all type h
sellers, so that 1 − π+ πFh

(
u′h
)
= 1. If u′l > maxSupp (Fl) = ūl, then the profits from this menu

are given by
µl
(
vl − u

′
l

)
+ µhΠh

(
u′l,u

′
h

)
.
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Since φl > 0, the above function is decreasing in u′l and u′h, and therefore

µl
(
vl − u

′
l

)
+ µhΠh

(
u′l,u

′
h

)
< µl (vl − ūl) + µhΠh (ūl, ūh) = µl (1 − π) (vl − cl) .

When u′l 6 ūl, the partial derivative of Π
(
u′l,u

′
h

)
with respect to u′l is

− µl
(
1 − π+ πFl

(
u′l
))

+ µlπfl
(
u′l
) (
vl − u

′
l

)
+ µh

vh − ch
ch − cl

>

−µl
(
1 − π+ πFl

(
u′l
))

+ µlπfl
(
u′l
) (
vl − u

′
l

)
+ µh

(
1 − π+ πFl

(
u′l
)) vh − ch
ch − cl

= 0.

Thus, for a given value of u′h, we must have

Π
(
u′l,u

′
h

)
6 Π

(
ūl,u′h

)
< Π (ūl, ūh) = µl (1 − π) (vl − cl)

where the last inequality follows from the fact that Πh is decreasing in u ′h. Thus, such global
deviations are unprofitable.

2. Consider next deviations with u′h ∈ [ch, ūh]. In this case, there must exist ũl such that u′h =
Uh (ũl) and thus Fh

(
u′h
)
= Fl (ũl). We can thus write the profits obtained from the deviation

menu (u ′l,u
′
h) as

µl
(
1 − π+ πFl

(
u′l
)) (

vl − u
′
l

)
+ µh (1 − π+ πFl (ũl))Πh

(
u′l,u

′
h

)
. (57)

We show that the function defined by (57) is strictly concave in u ′l for values of u′l ∈ Supp (Fl)
and decreasing for values of u′l > ūl so that this function is maximized at the value of u ′l, which
equates its partial derivative with zero. By (20), this partial derivative is zero when evaluated at
u ′l = ũl, which completes the proof.

Note that for u′l ∈ Supp (Fl), since Πh is linear in u′l, the second derivative of (57) with respect to
u′l is given by

∂2

∂
(
u′l
)2µl

(
1 − π+ πFl

(
u′l
)) (

vl − u
′
l

)
.

Using the form of the distribution Fl given by (51), we may rewrite this second derivative as

∂2

∂
(
u′l
)2µl

(
1 − π+ πFl

(
u′l
)) (

vl − u
′
l

)
=

∂2

∂
(
u′l
)2µl (1 − π) (vl − cl)

φl
(
vl − u

′
l

)1−φl

= (φl − 1)φlµl (1 − π) (vl − cl)
φl
(
vl − u

′
l

)−1−φl < 0

so that (57) is strictly concave in u′l for values of u′l ∈ Supp (Fl). For values u′l > ūl, 1 − π+ πFl
(
u′l
)
= 1

and thus (57) satisfies

µl
(
vl − u

′
l

)
+ µh (1 − π+ πFl (ũl))Πh

(
u′l,u

′
h

)
.

The derivative of this function with respect to u′l is given by

−µl + µh (1 − π+ πFl (ũl))
vh − ch
ch − cl

< −µl + µh
vh − ch
ch − cl

= −µlφl < 0.

Therefore, (57) is maximized at a value of u′l, which equates the partial derivative of (57) with zero.
This value must satisfy

−µl
(
1 − π+ πFl

(
u′l
))

+ µlπfl
(
u′l
) (
vl − u

′
l

)
+ µh (1 − π+ πFl (ũl))

vh − ch
ch − cl

= 0.
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Note that since (57) is strictly concave, at most one u′l exists that satisfies the above. The differential
equation (20) implies that u′l = ũl is a solution to the above equation. This implies that (57) must
be maximized at u′l = ũl.

A.5 Proofs of Propositions 11 and 12

We prove these propositions together. To begin, let φ1 be the value of φl that satisfies

ch > vl +
π(1 − µl) (vh − vl)

(1 − π)

[
(1 − π)

1−φl
φl − 1

] (58)

with equality. Similarly, let φ2 be the value of φl that satisfies

1 − π >
µhvh + µlvl − vl

(1 −φl)(µhvh + µlvl − ch)
(59)

with equality. We first argue that (58) represents a lower bound on φl and (59) represents an upper
bound on φl which lies below the lower bound defined by (58). In other words, the inequalities (58) and
(59) partition the set (−∞, 0]. We then prove that the equilibrium described in Proposition 12 exists—that
is, in each case, no profitable local or global deviations exist when buyers use the equilibrium strategies
defined jointly by Propositions 11 and 12.

Lemma 29. (58) is satisfied if and only if φ1 6 φl < 0 and (59) is satisfied if and only if φl 6 φ2. Moreover,
φ2 < φ1 < 0.

Proof. First, note that equation (58), which implicitly determines the threshold φ1, can be rewritten as

(1 − π)
1−φl
φl >

π

1 − π

vh − vl
ch − vl

µh + 1, (60)

or, after taking logs and substituting for φl, can be rewritten as

µh (vh − ch)

ch − cl − µh (vh − cl)
log (1 − π) − log(µhπ (vh − vl) + (1 − π) (ch − vl)) − log [(1 − π) (ch − vl)] > 0.

(61)
We show that the left side of (61) is a decreasing function of µh, that (61) is strictly satisfied when µh is
such that φl = 0, and that (61) is weakly violated when µh = 1. Hence, there is a unique threshold µ1
(and implied threshold φ1) such that for all µh 6 µ1 such that φl < 0, the separating condition (58) is
satisfied. Differentiating the left side of (61) with respect to µh, we obtain

log (1 − π)
(vh − ch) (ch − cl)

[ch − cl − µh (vh − cl)]
2 −

π (vh − vl)

µhπ (vh − vl) + (1 − π) (ch − vl)
,

which is negative for all π 6 1. Next, as φl → 0 from below, it is immediate that (60) is satisfied since
the left-hand side tends to infinity. As µh → 1, the term (1 −φl) /φl → −1 and so (60) tends to the
requirement that

1 > π
vh − vl
ch − vl

+ (1 − π),

which is violated since ch < vh.
Next, consider equation (59), which implicitly determines the threshold φ2. Substituting for φl, one
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can show the inequality (59) is equivalent to

µh (vh − vl)

[
1 + (1 − π)

vh − ch
ch − cl

]
> vh − vl + (ch − vl) (1 − π)

vh − ch
ch − cl

. (62)

Clearly, (62) represents a lower bound on µh, or, equivalently, an upper bound on φl. Note that this
equation is necessarily satisfied at µh = 1. It is immediate that when µh is such that φl = 0, equation
(59) is violated since ch > vl.

We now establish that φ2 < φ1 by proving that φl 6 φ2 implies φl < φ1. Suppose φl 6 φ2 and let
v̄ = µhvh + µlvl, so that we can write (59) as

1 − π >
v̄− vl

(1 −φl) (v̄− ch)
. (63)

Below, we will use the fact that (63) implies

1 −φl >
v̄− vl

(v̄− ch) (1 − π)
>
v̄− vl
v̄− ch

⇒ −φl >
ch − vl
v̄− ch

.

To prove that (58) is violated when φl 6 φ2, note that (58) can be rearranged as

(1 − π)

[
(1 − π)

1−φl
φl − 1

]
(ch − vl) − πµh (vh − vl) > 0

which can be simplified to

(1 − π) (v̄− ch) + (1 − π)
1
φl (ch − vl) > v̄− vl. (64)

We will show that (64) is violated if (63) holds. Towardsthis end, define a function

H(π) = (1 − π) (v̄− ch) + (1 − π)
1
φl (ch − vl)

so that we must show H(π) < v̄− vl. We argue that H(·) is a strictly convex function which is decreasing
at π = 0 and that, if π satisfies (63), then H(π) < H(0) = v̄− vl, which completes the proof.

First, note that H(·) is strictly convex since φl < 0 and

H′ (π) = − (v̄− ch) −
1
φl

(1 − π)
1
φl

−1
(ch − vl) ,

H′′(π) =
1
φl

(
1
φl

− 1
)
(1 − π)

1
φl

−2
(ch − vl) > 0.

Next, observe that H(0) = v̄ − vl, H′(0) 6 0 when −φl > (ch − vl) / (v̄− ch) and limπ→1H(π) = ∞.
Thus, there is a unique value πs > 0 such that for all π < πs, H(π) 6 v̄− vl.

Next, let π̂ denote the value of π such that (63) is satisfied with equality. We will prove that H(π̂) <
v̄− vl, so that H(π) < v̄− vl for all π 6 π̂.

Using the expression for H(π), we have

H (π̂) =
v̄− vl

(1 −φl) (v̄− ch)
(v̄− ch) +

(
v̄− vl

(1 −φl) (v̄− ch)

) 1
φl

(ch − vl) . (65)
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Straightforward algebra can be applied to (65) to show that H(π̂) < v̄− vl if and only if(
ch − vl
v̄− ch

)φl ( v̄− vl
v̄− ch

)1−φl
> (−φl)

φl (1 −φl)
1−φl . (66)

Since (v̄− vl) / (v̄− ch) = 1+(ch − vl) / (v̄− ch), if we let B(x) = xφl(1+ x)1−φl , then (66) can be written
as the requirement that

B

(
ch − vl
v̄− ch

)
> B (−φl) .

It is straightforward to show that B ′(x) < 0 when 0 < x < −φl, and since (63) implies −φl >
(ch − vl) / (v̄− ch), (66) must hold. Consequently, H(π) < H(π̂) < v̄− vl, which proves that φ1 > φ2.

Definition of the Threshold, ûl. To prove Propositions 11 and 12, we first define the threshold ûl for
various values of φl < 0.

Case 1: φl 6 φ2. The threshold satisfies ûl = ūl, the upper bound of Fl, where ūl satisfies

v̄− ūl = (1 − π)(v̄− ch). (67)

Case 2: φ2 < φl < φ1. The threshold satisfies

vl + (ûl − vl) [1 − π+ πFl (ûl)]
1
φl = v̄− (1 − π)(v̄− ch) (68)

where Fl(ûl) satisfies (22). As we will see below, in this case, the threshold will be such that Fl(ûl) ∈
(0, 1) so that the equilibrium is indeed mixed.

Case 3: φ1 < φl < 0. The threshold is any value such that ûl < ul where the lower bound of the
support of Fl satisfies

(1 − π) [µl(vl − ul) + µhΠh(ul, ch)] = v̄−
[
vl + (1 − π)

1
φl (ul − vl)

]
. (69)

This equation determines the lower bound as the value that equates profits from the worst (separating)
menu and the best (pooling) menu where the best menu is determined as the value of ul such that
Fl(ul) = 1 when Fl is determined by (20).

We now prove that the conjectured equilibria defined implicitly by the thresholds above, in each case,
are indeed equilibria.

Lemma 30. Suppose φ1 6 φl < 0. There exists an equilibrium with only separating menus.

Proof. It suffices to ensure that global deviations are unprofitable for buyers since, by construction,
the distribution Fl(ul) ensures no local deviations are profitable. To rule out global deviations, a proof
similar to that of Proposition 10 can be used. We show that for a given value of u′h, the profit function
is strictly concave in u′l and, therefore, it must be maximized at u′l = U−1

h

(
u′h
)
, since at this value the

derivative of the profit function is equal to zero (by construction).
Profits from such a global deviation are given by

µl
(
1 − π+ πFl

(
u′l
)) (

vl − u
′
l

)
+ µh

(
1 − π+ πFh

(
u′h
))
Πh
(
u′l,u

′
h

)
.

Since Πh is linear in u′l, the second derivative of the above function is equal to the second derivative
of profits from l type sellers. Using (20), we know that

(
1 − π+ πFl

(
u′l
))

= κ
(
u′l − vl

)−φl for some
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non-negative constant κ. Therefore, we have

∂2

∂
(
u′l
)2µl

(
1 − π+ πFl

(
u′l
)) (

vl − u
′
l

)
= −µlκ

∂2

∂
(
u′l
)2

(
u′l − vl

)1−φl

= −µlκ (1 −φl) (−φl)
(
u′l − vl

)−1−φl < 0.

Lemma 31. Suppose φl 6 φ2. There exists an equilibrium with only pooling menus.

Proof. We first prove that no local deviations in the pooling equilibrium strictly improve profits. Below
we demonstrate global deviations are also unprofitable. Recall that in an equilibrium with only pooling
menus, the distribution Fl (ul) satisfies

(1 − π+ πFl(ul)) (v̄− ul) = (1 − π) (v̄− ch) (70)

where v̄ = µhvh + µlvl, Uh(ul) = ul, Fh(ul) = Fl(ul), and Supp(Fl) = [ch, v̄− (1 − π) (v̄− ch)] . Fix any
utility, ul, interior to the support of Fl and consider a local deviation to the menu (u ′l,u

′
h) = (ul,ul+ ε).

Profits from such a local deviation satisfy

µl (1 − π+ πFl(ul)) (vl − ul) + µh (1 − π+ πFl (ul + ε))Πh (ul,ul + ε)

= µl (1 − π+ πFl(ul)) (vl − ul) + µh (1 − π+ πFl (ul + ε))

[
vh − ul − ε

vh − cl
ch − cl

]
.

If local deviations are unprofitable, this function must be maximized at ε = 0, so that Fl must satisfy

µhπfl (ul) [vh − ul] − µh (1 − π+ πFl (ul))
vh − cl
ch − cl

6 0.

Totally differentiating (70) yields the following relationship between Fl and fl,

πfl(ul) (v̄− ul) = (1 − π+ πFl(ul)) (71)

so that local deviations are unprofitable if

µhπfl (ul) [vh − ul] − µhπfl(ul) (v̄− ul)
vh − cl
ch − cl

6 0.

Since Fl is continuous in our constructed equilibrium, we may simplify this condition using straightfor-
ward algebra as

ul (vh − ch) 6 v̄ (vh − cl) − vh (ch − cl) .

Consequently, we see that it suffices to check that this deviation is unprofitable at maxSupp(Fl). Using
ul = v̄− (1 − π) (v̄− ch) , simple algebraic manipulations show that this local deviation is unprofitable
as long as

v̄− vl
(1 −φl) (v̄− ch)

6 1 − π, (72)

which is guaranteed by Lemma 29 since φl 6 φ2.
To rule out global deviations, we show that for any value of u′h ∈ Supp (Fl), the profit function in

increasing in u ′l for all u ′l 6 u
′
h. Thus, profits are maximized at the pooling menu u′l = u

′
h so that there

are no profitable deviations.
Profits associated with any global deviation (u ′l,u

′
h) with u ′l 6 u

′
h and u ′h ∈ Supp(Fl) are given by

µl
(
1 − π+ πFl(u

′
l)
) (
vl − u

′
l

)
+ µh

(
1 − π+ πFl

(
u′h
))
Πh
(
u′l,u

′
h

)
.
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Differentiating, we obtain

µlπfl
(
u′l
) (
vl − u

′
l

)
− µl

(
1 − π+ πFl(u

′
l)
)
+ µh

(
1 − π+ πFl

(
u′h
)) vh − ch
ch − cl

>

µlπfl
(
u′l
) (
vl − u

′
l

)
− µl

(
1 − π+ πFl(u

′
l)
)
+ µh

(
1 − π+ πFl

(
u′l
)) vh − ch
ch − cl

=

µlπfl
(
u′l
) (
vl − u

′
l

)
− µlφl

(
1 − π+ πFl(u

′
l)
)

(73)

where the inequality follows from the fact that u ′l 6 u
′
h so that Fl(u ′h) > Fl(u

′
l). Using (71) to substitute

for πfl(u ′l), we can write the last line of (73) as

µl(1 − π+ πFl(u
′
l))

[
1 +

vl − v̄

v̄− u′l
−φl

]
.

Since u′l 6 u
′
h 6 maxSupp (Fl), the expression in brackets takes its minimum value at u′l = maxSupp (Fl)

so that
1 +

vl − v̄

v̄− u′l
−φl > 1 +

vl − v̄

(1 − π) (v̄− ch)
−φl > 0

where the second inequality follows from (72). This implies that the expression in (73) is positive so that
profits are globally maximized at u ′l = u

′
h for all u ′h ∈ Supp(Fl). �

Lemma 32. Suppose φ2 < φl < φ1. There exists a mixed equilibrium.

Proof. Recall that the threshold ûl is such that the constructed equilibrium features pooling contracts
for ul ∈ [minSupp(Fl), ûl] and separating menus for ul ∈ (ûl, maxSupp(Fl)). First, we claim that when
φ2 < φl < φ1, then ûl is interior in the sense that ch < ûl < ū(ûl). Second, we prove that no local or
global deviations are profitable.

To see that ûl is interior, conjecture that ûl > ch (we will verify it later), in which case ûl must
satisfy48

v̄−

{
vl + (ûl − vl)

[
(1 − π)

v̄− ch
v̄− ûl

] 1
φl

}
− (1 − π) (v̄− ch) = 0. (74)

Let H(ûl) denote the left-hand side of (74). We will prove that when φ2 < φl < φ1, there are two
solutions to H(ûl) = 0 with ûl > ch.

First, observe that one solution to H (ûl) = 0 is given by

ûl = ū = v̄− (1 − π) (v̄− ch) .

This solution coincides with the conjecture that all menus are pooling and therefore ū (ûl) = ûl.
We argue that there exists another solution ûl ∈ (ch, ū). We show this by proving that H(·) is convex,

H(ch) > 0, and H ′(ū) > 0 so that an additional solution in the interval (ch, ū) must exist.
Note that

H′ (u) = −

[
(1 − π)

v̄− ch
v̄− u

] 1
φl

− (u− vl)
1
φl

[
(1 − π)

v̄− ch
v̄− u

] 1
φl

−1

(1 − π) (v̄− ch) (v̄− u)
−2 .

By differentiating H ′(·) and applying extensive algebraic manipulations (available upon request), one

48Recall that equilibrium profits satisfy Π̄ = (1 − π)(v̄ − ch) when the worst menu offered in equilibrium is the pooling,
monopsony menu.
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can show that H ′′(·) > 0. Recall that ū is defined so that H(ū) = 0 and

H′ (ū) = −1 −
1
φl

ū− vl
v̄− ū

= H′ (ū) =
1 −φl
φl

[
1 −

v̄− vl
(1 − π) (1 −φl) (v̄− ch)

]
where the second equality is obtained by substituting for ū and rearranging terms. When φl > φ2, the
term in brackets is negative, by Lemma 29, so that H′ (ū) > 0. Finally, one can show that H(ch) satisfies

H (ch) =
1

(1 − π)
1
φl − (1 − π)

[
vl +

π (v̄− vl)

(1 − π)
1
φl − (1 − π)

− ch

]
.

From Lemma 29, since φl < φ1 < 0, the term in brackets is strictly positive, and, since the leading
fraction is also positive, we must have H(ch) > 0.

Hence, when φ2 < φl < φ1 < 0, there must exist a solution to H(ûl) = 0 with ûl ∈ (ch, ū). When
ûl < ū, one can show that Fl(ûl) < 1 when Fl is determined by (22) on the interval [ch, ûl], which
confirms the conjecture that ûl is the interior of the support of Fl.

We now show that buyers cannot improve their profits by deviating from the constructed mixed
allocation. As in Lemma 30 with only separation, the distribution Fl for ul ∈ [ûl, maxSupp(Fl)] is
chosen to ensure local deviations are not profitable. It remains to show, then, that local deviations are
not profitable in the pooling region and that no global deviations are profitable. As in Lemma 31 with
only pooling menus, it suffices to ensure that at the upper bound of the pooling region, ûl, no local
deviations are profitable, or

ûl (vh − ch) 6 v̄ (vh − cl) − vh (ch − cl) . (75)

To prove that (75) holds, first note that since φ2 < φl < φ1, we have ch < ûl < ū (ûl). We now prove
that (75) is satisfied at ûl. Algebra (available upon request) shows that (75) may be written as

ûl 6
−φl

1 −φl
v̄+

1
1 −φl

vl.

Since H(ûl) = 0, if H
(

−φl
1−φl

v̄+ 1
1−φl

vl

)
6 0 then since H(·) is convex, (75) must be satisfied.

Using the form of H(·) implied by the left-hand side of (74), one can show that

H

(
−φl

1 −φl
v̄+

1
1 −φl

vl

)
= (v̄− vl)

[
v̄− vl − (1 − π) (v̄− ch)

v̄− vl
+φl

(1 −φl)
1
φl

−1
(1 − π)

1
φl (v̄− ch)

1
φl

(v̄− vl)
1
φl

]
.

(76)

We now show that the term in brackets on the right side of (76) is negative. To simplify notation, define
ξ = (1 − π) (v̄− ch) / (v̄− vl) so that the term in brackets can be written compactly as

1 − ξ+φl (1 −φl)
1
φl

−1
ξ

1
φl .

Let G(ξ) = 1 − ξ+φl (1 −φl)
1
φl

−1
ξ

1
φl and observe that for ξ 6 1/(1 −φl), we have

G′(ξ) = −1 + [(1 −φl) ξ]
1
φl

−1
> 0

so that for low values of ξ, G(ξ) is an increasing function.
Since φl > φ2, (63) implies that ξ < 1/(1 −φl). Moreover, since G(1/(1 −φl)) = 0, it must be that

G(ξ) 6 G(1/(1 −φl)) 6 0, which ensures the term in brackets in (76) is indeed negative as desired.
To rule out global deviations, one can use the arguments provided in the proofs of Lemmas 30 and
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31 in each region of the Supp (Fl). Since the arguments are exact replicas of the arguments above, we
omit them here. �

A.6 Proof of Theorem 13

We begin with a lemma which ensures that the marginal distribution Fl is continuous (i.e., it has no
mass points) when φl 6= 0. We then prove uniqueness of the equilibrium first for φl > 0 and then for
φl < 0. (In Appendix A.9, we demonstrate uniqueness for φl = 0.)

Lemma 33. If φl 6= 0, then Fl is continuous.

Proof. Recall from Lemma 28 that if Fl has a mass point, then it occurs at ûl = vl. As well, from
Lemma 26, there must exist a positive measure set S = {ûl,uh)} such that each equilibrium menu
(ûl,uh) has Πl = 0. Let uh denote the lowest value of uh for which (ûl,uh) belongs to the closure of the
set S and let ūh denote the highest such value. Without loss of generality, we may assume that (ûl, ūh)
and (ûl,uh) belong to S and thus deliver the same profits to a buyer as the equilibrium level of profits.

Consider then the value of two different deviations, (ûl − ε,uh) and (ûl + ε, ūh), for a small value of
ε > 0, both of which must be feasible. The profits from these deviations are given by

Π (ûl − ε,uh) = µh (1 − π+ πFh (uh))Πh (ûl − ε,uh) + µl (1 − π+ πFl (ûl − ε)) ε

Π (ûl + ε, ūh) = µh (1 − π+ πFh (ūh))Πh (ûl + ε, ūh) − µl (1 − π+ πFl (ûl + ε)) ε.

These equalities are valid because Fh does not have a mass point and Fl does not have a mass point for
ul > vl or ul < vl. Since Fl is then left or right differentiable at ûl, we have that

d

dε
Π (ûl − ε,uh)

∣∣∣∣
ε=0

= −µh (1 − π+ πFh (uh))
vh − ch
ch − cl

+ µl
(
1 − π+ πF−l (ûl)

)
d

dε
Π (ûl + ε, ūh)

∣∣∣∣
ε=0

= µh (1 − π+ πFh (ūh))
vh − ch
ch − cl

− µl
(
1 − π+ πF+l (ûl)

)
.

The optimality of menus in S implies that the above expressions must both be non-positive. Since the
equilibrium distributions are well-behaved above and below vl, the equilibrium necessarily exhibits the
strict rank-preserving property by Theorem 6 and therefore, F−l (ûl) = Fh (uh) and F+l (ûl) = Fh (ūh).
As a result, the above inequalities imply that

−µh
vh − ch
ch − cl

+ µl 6 0

µh
vh − ch
ch − cl

− µl 6 0.

When φl 6= 0, one of the above is violated. Hence, a profitable deviation exists yielding the necessary
contradiction. �

Case 1: φl > 0. As we have shown, any separating equilibrium is uniquely determined. Thus, in
order to show the uniqueness of the equilibrium in this case, it remains to show that any equilibrium
is separating. To see this, suppose to the contrary that ul = uh for some menu offered in equilibrium.
Now, consider the following alternative menu (ul− ε,uh) for a small and positive value of ε. This menu
is feasible and the change in the profits for a small value of ε is given by

µl(1 − π+ πFl(ul))ε− µh(1 − π+ πFh(uh)
vh − ch
ch − cl

ε− µlπf
−
l (ul)(vl − ul)ε
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where f−l is the left-derivative of Fl at ul; recall from Appendix A.3 that Fl must be differentiable.
Using the definition of φl and strict rank preserving property, we can write the above as

µlφl(1 − π+ πFl(ul))ε− µlπf
−
l (ul)(vl − ul)ε.

The above expression must be positive: φl > 0, Fl and f−l (ul) are weakly positive, and ul > vl since
ul = uh > ch > vl where ch > vl by the lemons assumption. Therefore, this alternative menu is a
profitable deviation which yields the necessary contradiction.

Case 2: φl < 0. To prove the equilibrium characterized in Proposition 12 is unique, we first prove
that in any equilibrium with φl < 0, if ū = maxSupp(Fl), then Uh(ū) = ū so that the best menu in
equilibrium is a pooling menu. Next, we prove that if the equilibrium has a pooling region, the region
begins at the lower bound of the support of Fl or ends at the upper bound of Fl. Additionally, if the
equilibrium features a separating region, this region must end at the upper bound of the support of Fl.
These results imply that any equilibrium must take one of the three forms described in Proposition 12:
only separating, only pooling, or mixed. Finally, we show that the necessary conditions for each type of
equilibrium to exist are mutually exclusive so that at most one type of equilibrium exists for each region
of the parameter space, ensuring our equilibrium is unique for all φl < 0. We prove these results in the
following sequence of lemmas.

Lemma 34. If φl < 0, then the best equilibrium menu is a pooling menu.

Proof. Let ū = maxSupp(Fl) and suppose for contradiction that Uh(ū) > ū. Consider a deviation
menu with

(
u ′l,u

′
h

)
= (ū+ ε,Uh(ū)). Since Uh (ū) > ū, this menu is incentive compatible and has

Fl(u
′
l) = Fl

(
u ′h
)
= 1. This menu increases the buyer’s profits relative to the menu (ū,Uh(ū)) by the

amount
−µlε+ µh

vh − ch
ch − cl

= −µlφlε > 0

where the inequality follows from φl < 0. This profitable deviation yields the necessary contradiction
so that we must have Uh(ū) = ū. �

Lemma 35. If φl < 0 and an equilibrium features [u1,u2] ⊆ Supp(Fl) such that Uh(ul) = ul for ul ∈ [u1,u2],
then either u1 = minSupp(Fl) or u2 = maxSupp(Fl).

Proof. Suppose towards a contradiction that a pooling interval with u1 > minSupp(Fl) and u2 <

maxSupp(Fl) exists. Then there must exist intervals sufficiently close to and below u1 and above u2,
respectively, in which the equilibrium menus feature separation. Since in these intervals, Uh(ul) > ul
but Uh(u1) = u1 and Uh(u2) = u2, we must have limul↗u1 U

′
h(ul) 6 1 and limul↘u2 U

′
h(ul) > 1. In

any region with Uh(ul) > ul, the distribution Fl must also satisfy

πfl(ul)

1 − π+ πFl (ul)
=

−φl
ul − vl

since local deviations must be unprofitable. Moreover, in any such region, by the equal profit condition,
Uh must satisfy

v̄− µlφlul − µh
vh − cl
ch − cl

Uh(ul) = Π̄ (1 − π+ πFl (ul))
−1

where Π̄ denotes the level of equilibrium profits.
Using these features of the conjectured equilibrium, in the separating regions, U′h(ul) satisfies

−µlφl − (1 − µlφl)U
′
h (ul) =

Π̄

1 − π+ πFl(ul)

φl
ul − vl
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and so U ′′h satisfies

−(1 − µlφl)U
′′
h(ul) =

Π̄πfl (ul)

[1 − π+ πFl(ul)]
2

φl
ul − vl

+
Π̄

1 − π+ πFl(ul)

−φl

[ul − vl]
2 ,

which implies that Uh is concave when φl < 0. However, the existence of the pooling region implies
that U′+h (u2) > 1 > U′−h (u1), which contradicts the concavity of Uh given that u1 < u2. Hence, either
u1 = minSupp(Fl) or u2 = maxSupp(Fl). �

Lemma 36. If φl < 0 and an equilibrium features [u1,u2] ⊆ Supp(Fl) such thatUh (ul) > ul for ul ∈ (u1,u2),
then u2 = maxSupp(Fl).

Proof. Suppose by way of contradiction that an equilibrium features separation (Uh(ul) > ul) on an
interval [u1,u2] ⊆ Supp(Fl) with u2 < maxSupp(Fl). Then there must exist a pooling interval [u2, ū]
for some ū. Since u2 > minSupp(Fl), Lemma 35 implies that ū = maxSupp (Fl). Since the conjectured
equilibrium features separation in [u1,u2] with Uh (ul) → ul as ul → u2, we must have U′−h (u2) 6 1.
As the conjectured equilibrium satisfies

πfl(ul)

1 − π+ πFl(ul)
=

−φl
ul − vl

on the interval [u1,u2], U ′h(u2) 6 1 implies

1
1 − µlφl

[
−µlφl +

Π̄

1 − π+ πFl (u2)

−φl
u2 − vl

]
6 1

or
−φlΠ̄ 6 [1 − π+ πFl (u2)] (u2 − vl) .

Since u2 < ū, F (u2) < 1 so that
−φlΠ̄ < u2 − vl. (77)

Moreover, Lemma 34 ensures that the best equilibrium menu is pooling with utility ū and, therefore,
equilibrium profits satisfy Π̄ = v̄ − ū. Using the fact that u2 < ū, substituting for Π̄ in (77), and
rearranging terms, we obtain

0 < φl −
vl − ū

v̄− ū
. (78)

We will show that (78) implies that a cream-skimming deviation must be a profitable deviation from
the best (pooling) menu, yielding the necessary contradiction. Since the conjectured equilibrium features
pooling in the interval [u2, ū], for ul in this interval, the equilibrium satisfies

(1 − π+ πFl(ul))(v̄− ul) = (1 − π)(v̄− ū)

so that

fl(ul) =
1 − π+ πFl(ul)

π(v̄− ul)
. (79)

Consider then a cream-skimming deviation of the form (u ′l,u
′
h) = (ū− ε, ū), which yields profits equal

to
(1 − π+ πFl(ū− ε))µl(vl − ū+ ε) + (1 − π+ πFh(ū))µhΠh(ū− ε, ū). (80)

Differentiating (80) with respect to ε and evaluating it at ε = 0, we obtain

(1 − π+ πFl(ū))µl − πfl(ū)µl(vl − ū) − (1 − π+ πFh(ū))µh
vh − ch
ch − cl
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which, given that Fl(ū) = 1 and fl(ū) = 1/[π(v̄− ū)], can be written as

µl

[
φl −

vl − ū

v̄− ū

]
> 0, (81)

where the inequality follows from (78). Hence, this cream-skimming deviation strictly increases the
buyers’ profits relative to the conjectured equilibrium level, a contradiction. �

Since the only possible equilibria when φl < 0, then, are fully separating (except at the upper bound
of the support of Fl), fully pooling, or mixed, we need only prove that only one of these equilibria may
exist for any value of φl. We have already shown in the proof of Proposition 12 that φ2 < φ1 < 0.
Recall that a necessary condition for a fully pooling equilibrium is that φl 6 φ2. Hence, there is no fully
pooling equilibrium when φl > φ2. Similarly, a necessary condition for a fully separating equilibrium
is that φl > φ1 so that when φl < φ1, no fully separating equilibrium exists. This means that in the
interval φ2 < φl < φ1, the only possible equilibrium is a mixed equilibrium. Moreover, the threshold in
the mixed equilibrium is interior to the support of Fl only if φl lies between φ2 and φ1. Hence, at most
one of these types of equilibria may exist for any value of φl < 0, proving that the equilibrium described
in Proposition 13 is unique. �

A.7 Proof of Proposition 14 and Lemma 15

Proof of Proposition 14. When φl < 0, it is immediate that welfare is (weakly) maximized when π = 0.
To prove that welfare is maximized for π ∈ (0, 1) when φl > 0, we prove that our measure of welfare is
strictly increasing in π at π = 0 and strictly decreasing in π at π = 1.

Given the function forms for xh(ul), ūl and Fl(ul), we can compute the definite integrals in (23)
exactly. Extensive algebraic calculations available upon request reveal that welfare is equal to

W (π,µh) = (1 − µh)vl + µhch

+ 2
(vl − cl) (vh − ch)

π (vh − cl)

(1 − µh)(1 − π)π+
(1 − π)1/φl(µh) − (1 − π)2(

1
φl(µh)

− 2
) + µh

1 − (1 − π)2

2


−

(vl − cl) (vh − ch)

π (vh − cl)

−(1 − µh)(1 − π)2 log(1 − π) +
(1 − π)

1+φl(µh)
φl(µh) − (1 − π)2(

1
φl(µh)

− 1
) + µhπ (1 − π)

 .

(82)

where we have written φl explicitly as a function of µh as we will explore properties with respect to µh
below. Differentiating (82) and rearranging terms, one can show that Wπ(π,µh) satisfies

1
ξ
Wπ(π,µh) = −2(1 − µh) −

2
π2

φl
1 − 2φl

[
(1 − π)

1
φl − 1 + π2 +

1
φl
π(1 − π)

1−φl
φl

]
−

(1 − µh)

π2

[
π(1 − π) + (1 − π2) log(1 − π)

]
+

1
π2

φl
1 −φl

[
(1 − π)

1+φl
φl − (1 − π2) +

1 +φl
φl

π(1 − π)
1
φl

]
(83)

where

ξ =
(vl − cl)(vh − ch)

vh − cl
> 0.

65



As π→ 1, using (83), it is straightforward to show that

1
ξ

lim
π→1

Wπ(π,µh) = −2(1 − µh) < 0

so that Wπ(π,µh) < 0 for π sufficiently close to 1. Instead, as π→ 0, (83) implies that

1
ξ

lim
π→0

Wπ(π,µh) =
1
2

[
1
φl

− (1 − µh)

]
> 0

where the inequality follows since φl ∈ (0, 1]. We have thus shown that welfare is increasing in π for π
near 0 and decreasing in π for π near 1 as desired. �

Proof of Lemma 15. Since φl > 0, one can show that the introduction of the price floor only changes
the characterization of equilibrium in Proposition 10 by changing the boundary condition and the profits
from offering the worst equilibrium menu. Formally, Proposition 10 continues to hold, with adjusted
boundary condition Fl(p) = 0 and adjusted equal profit condition

(1 − π+ πFl(ul)) [µhΠh(ul,Uh(ul)) + µl(vl − ul)] = (1 − π)µl [vl − cl −φl(p− cl)] . (84)

Using the adjusted boundary and equal profit conditions, we can determine Fl(ul;p) and xh(ul;p),
which allows us to define welfare as a function of π, µh, and p according to

W(π,µh,p) = (1 − µh)vl + µhch + µh(vh − ch)

∫
xh(ul;p)fl(ul;p)[1 − π+ 2πFl(ul;p)]dul. (85)

Straightforward, but tedious calculus (available upon request) then proves that W is increasing in p for
π near 0, and decreasing in p near π = 1. �

A.8 Proof of Proposition 16

Proof. We start with the form of W(π,µh) given by (82). Tedious, but straightforward, manipulations
can then be used to derive

Wµh (π,µh) = ch − vl +
(vl − cl) (vh − ch)

(vh − cl)

[
2π− 1 +

−(1 − π)2 log(1 − π) +φ′l (µh) Ĥ (π,µh)
π

]

where Ĥ (π,µh) is a continuous function given on φl(µh) ∈ (0, 1) given by

Ĥ (π,µh) = log(1 − π)
(1 − π)

1
φl(µh)

φl(µh)

[
1 − π

(1 −φl(µh))
2 −

2

(1 − 2φl(µh))
2

]

+ log(1 − π)(1 − π)
1

φl(µh)

[
4

(1 − 2φl(µh))
2 −

(1 − π)

(1 −φl(µh))
2

]

+
2
[
(1 − π)1/φl(µh) − (1 − π)2

]
(1 − 2φl(µh))

2 −

[
(1 − π)

1
φl(µh) (1 − π) − (1 − π)2

]
(1 −φl(µh))

2

We will argue that when π is sufficiently small, then

lim
µh→0

Wµh (π,µh) < lim
µh→µ0

Wµh (π,µh) (86)
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so that the Wµh must be increasing on an interval of µh; that is, W must be convex on an interval of µh.
In contrast, the above inequality is reversed when π is sufficiently close to 1.

It is straightforward to show that

lim
µ→µ0

Wµ (π,µh) − lim
µ→0

Wµ (π,µh)

=

(
vh − ch
ch − cl

)
(vl − cl) (vh − ch)

(vh − cl)π

[
2(1 − π) log(1 − π) + 2(1 − π)π+

1
2
(1 − π)2 [log(1 − π)]2 +

(1 − π)2

(1 − µ̄)2

]
.

Now, define M(π) as

M(π) = 2 log(1 − π) + 2π+
1
2
(1 − π) [log(1 − π)]2 +

(1 − π)

(1 − µ̄)2 .

Then, inequality (86) is satisfied if and only if M(π) > 0. Note that as π → 0, M(π) → 1/(1 − µ0)
2 > 0

so that for π sufficiently close to 0, inequality (86) is satisfied, which implies that W (π,µh) is convex in
µh in some interval of µh ∈ (0,µ0). However, as π → 1,M(π) → −∞ so that inequality (86) is violated,
implying that W (π,µh) is concave in µh in some interval of µh ∈ (0,µ0). �

A.9 Masspoint Equilibria

Proposition 37. Suppose φl = 0. The unique equilibrium of the game is described by the pair of distribution
functions, with Fl(ul) degenerate at vl and Fh(uh) satisfying

(1 − π+ πFh (uh))µhΠh (vl,uh) = (1 − π)µl (vl − cl) (87)

with Supp(Fh) = [ch, ch + π (vl − cl) (vh − ch) /(vh − cl)].

Proof of Proposition 37. To show that the constructed distributions constitute an equilibrium, we show
that there are no profitable deviations. In other words,

∀
(
u′h,u′l

)
: µh

(
1 − π+ πFl

(
u′l
))
Πh
(
u′l,u

′
h

)
+ µl

(
1 − π+ πFl

(
u′l
)) (

vl − u
′
l

)
6 (1 − π)µl (vl − cl) .

We consider two cases:

1. u′h > maxSupp (Fh) = ūh: In this case, when u′l > vl, the profit function is given by

µhΠh
(
u′l,u

′
h

)
+ µl

(
vl − u

′
l

)
.

Since φl = 0, the above function is invariant to changes in u′h and is strictly decreasing in u′l.
Therefore, its value must be less than its value evaluated at (ūh, vl), which gives the equilibrium
profits. When, u′l 6 vl, the profits are given by µhΠh

(
u′l,u

′
h

)
, which is decreasing in u′h, and

therefore

µhΠh
(
u′l,u

′
h

)
+ µl (1 − π)

(
vl − u

′
l

)
< µhΠh

(
u′l, ūh

)
+ µl (1 − π)

(
vl − u

′
l

)
.

Note that the right-hand side of the above inequality is a linear function of u′l whose derivative is
given by

µh
vh − ch
vl − cl

− µl (1 − π) = µh
vh − ch
ch − cl

− µl + µlπ

= −µlφl + µlπ = µlπ > 0.
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Therefore, we must have that

µhΠh
(
u′l, ūh

)
+ µl (1 − π)

(
vl − u

′
l

)
6 µhΠh (vl, ūh) = (1 − π)µl (vl − cl)

where the last equality follows from (87).

2. u′h ∈ [ch, ūh]. In this case, when u′l > vl, profits are given by

µh
(
1 − π+ πFl

(
u′h
))
Πh
(
u′l,u

′
h

)
+ µl

(
vl − u

′
l

)
6 µh

(
1 − π+ πFl

(
u′h
))
Πh
(
vl,u′h

)
= (1 − π)µl (vl − cl)

where the inequality is satisfied since u′l > vl and the last equality follows from (87).

When u′l 6 vl, profits are given by

µh
(
1 − π+ πFl

(
u′h
))
Πh
(
u′l,u

′
h

)
+ µl (1 − π)

(
vl − u

′
l

)
.

The above function is linear in u′l and its derivative is given by

µh
(
1 − π+ πFl

(
u′h
)) vh − ch
ch − cl

− µl (1 − π) = (1 − π)

(
µh
vh − ch
ch − cl

− µl

)
+ πFl

(
u′h
) vh − ch
ch − cl

= πFl
(
u′h
) vh − ch
ch − cl

> 0.

Therefore, it is maximized at u′l = vl. This establishes that there are no profitable deviations.

To conclude the proof, we show that the equilibrium constructed is the unique equilibrium when
φl = 0.

In order to show uniqueness of equilibrium, it is sufficient to show that, in any equilibrium, Fl must
be degenerate at vl. When Fl is degenerate at vl, from Lemmas 24 and 27, we know that Fh must be
continuous and strictly increasing and therefore it must satisfy (87).

Suppose that ul 6= vl exists that belongs to the support of Fl. Then the proof of Lemma 28 can
be used to show that for values of ul 6= vl, Fl must have no flat and mass points and consequently
equilibrium must exhibit the strict rank-preserving (SRP) property. Now consider any menu for which
ul < vl and a deviation that increases the value of ul by a small amount. In this case, Fl is differentiable
and we can write the change in profits from such a deviation as

µlπf
+
l (ul)(vl − ul) − µl(1 − π+ πFl(ul)) + µh

vh − ch
ch − cl

(1 − π+ πFh(uh)) =

µlπf
+
l (ul)(vl − ul) − µlφl(1 − π+ πFl(ul)) > 0

where in the above f+l is the right derivative of Fl and we have used SRP. The above implies that
increasing ul must be a profitable deviation which proves the contradiction. The case with ul > vl is
ruled out in a similar fashion. This concludes the proof. �

A.10 Model with Many Types

A.10.1 Proof of Lemma 17

This proof is a direct extension of the proof of Lemma 1, and hence is omitted for brevity.

A.10.2 Proof of Proposition 19

To show the strict rank-preserving property, we first show that Fj’s are continuous and strictly increas-
ing. The argument for this claim is inductive.
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Step 1: FN is strictly increasing and continuous.

FN is strictly increasing. Suppose, towards a contradiction, that there is an interval
[
u′N,u′′N

]
where

FN is constant and takes a value between 0 and 1. Without loss of generality, we can assume that
u′′N belongs to some contract that is offered in equilibrium. Let one such menu be given by u′′ =(
u′′1 , · · · ,u′′N

)
. Given our assumption that the equilibrium is separating, this menu must maximize∑N

i=1 µi (1 − π+ πFi (ui))Πi (ui−1,ui) over the set of menus that are subject to the participation con-
straints. Now consider a menu given by

(
u′′1 , · · · ,u

′′
N−1,u′′N − ε

)
for a small ε. Since u′′N > u′N > cN,

this menu satisfies the participation constraint. Moreover, this menu keeps the fraction of noncaptive N
types constant while increasing profits per N-th type, thus yielding higher profits, a contradiction.

FN is continuous. Suppose, towards a contradiction, that FN has a mass point at ûN. Let
u = (u1, · · · ,uN−1, ûN) be an arbitrary equilibrium menu with its N-th element given by ûN. Note
that we must have ΠN (uN−1, ûN) 6 0 and ûN = cN. The fact that ΠN (uN−1, ûN) 6 0 is immediate,
since otherwise a small increase in ûN would attain a higher level of profits. Additionally, if ûN > cN,
then a small decrease in ûN would attain higher profits. Such a change increases profits because either
ΠN < 0—in which case this change decreases the probability that anN type accepts the offer discretely—
or ΠN = 0—in which case this change makes profits per N type strictly positive.

Non-positivity of profits, together with ûN = cN, implies that

vN −
vN − cN−1

cN − cN−1
cN +

vN − cN
cN − cN−1

uN−1 6 0⇒ vN − cN
cN − cN−1

uN−1 6
vN − cN
cN − cN−1

cN−1 ⇒ uN−1 6 cN−1.

This inequality, together with the participation constraint, cN−1 6 uN−1, implies that uN−1 must equal
cN−1 and ΠN = 0. That is, any menu u with ûN as its N-th element must also satisfy uN−1 = cN−1,
so that FN−1 must also have a mass point at cN−1. Repetition of this argument implies that any menu
containing a mass point at ûN must also satisfy uj = cj, and thus Fj must have a mass point at cj.
However, then a small increase in u1 from u1 = c1 must increase profits, as F1 puts a mass at c1 and
profits from type 1 sellers are positive. This yields the necessary contradiction.

Step 2: If {Fk}
N
k=j+1 are strictly increasing and continuous, then Fj must have the same properties.

To prove this claim, we first prove the following lemma:

Lemma 38. Suppose that, for some j 6 N− 1, the distributions {Fk}
N
k=j are continuous and strictly increasing.

Then there exists a sequence of strictly increasing and continuous functions
{
Uk,j

(
uj
)}N
k=j+1 such that for any

menu û offered in equilibrium with its j-th element given by ûj,
(
ûj+1, · · · , ûN

)
=
(
Uj+1,j

(
ûj
)

, · · · ,UN,j
(
ûj
))

.

Proof. We prove this claim by induction. For any value of uN−1, let U+
N (uN−1) be the set of values of

uN such that equilibrium menus exist with (N− 1)-th and N-th elements given by (uN−1,uN).
We first show that U+

N (uN−1) is a strictly increasing function. Using exactly the same arguments
as in the two-type case, it is straightforward to show that: (i) U+

N (uN−1) must be a strictly increasing
correspondence; and (ii) if u,u′ ∈ U+

N (uN−1), then [u,u′] ⊆ U+
N (uN−1). These results are direct im-

plications of strict supermodularity of the function µN (1 − π+ πFN (uN))ΠN (uN−1,uN) and the strict
monotonicity of FN.

Now suppose that for some ûN−1, U+
N (ûN−1) is a correspondence and so contains an interval given

by [u′,u′′]. Then

Pr (uN−1 = ûN−1) =

∫
{(u1,··· ,uN−2,ûN−1,uN)∈Supp(Φ)}

dΦ > FN
(
u′′
)
− FN

(
u′
)
> 0
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where the last inequality follows from the fact that FN is strictly increasing. This inequality implies that
FN−1 has a mass point at ûN−1, in contradiction with the assumption that FN−1 is continuous. Hence,
U+
N must be a single-valued function.

One can also adapt our arguments from the two-type case to show that U+
N (uN−1) is strictly increas-

ing. If it were constant on an interval, then FN must have a mass point, contradicting the continuity of
FN. Thus, U+

N (uN−1) is a strictly increasing function and we may write profits from the N-th type as
function of uN−1 only. Let this function be given by Π+

N (uN−1).
Next, let U+

N−1 (uN−2) be defined in a similar fashion as above. Since the profit function

µN−1 (1 − π+ πFN−1 (uN−1))ΠN−1 (uN−2,uN−1) +Π
+
N (uN−1)

is strictly supermodular and FN−1 and FN−2 are strictly increasing and continuous, U+
N−1 must be a

strictly increasing, single-valued function. Exact repetition of this argument implies that for all k ∈
{j, . . . ,N− 1}, U+

j is a strictly increasing function. Therefore, we must have that

Uk,j
(
ûj
)
= U+

k

(
U+
k−1

(
· · ·
(
U+
j+1

(
ûj
))))

for all k ∈ {j+ 1, . . . ,N}, and this concludes the proof. �

We now return to proving step 2 of the induction argument.

Fj is strictly increasing. Suppose, by way of contradiction, that Fj has a flat over an interval [u′j,u
′′
j ]. Much

as in Lemma 28, we prove that if Fj is flat on the interval [u′j,u
′′
j ], then the marginal benefit of delivering

one additional unit of surplus to type j+ 1 (incorporating the impact on all types i > j+ 1) changes
with uj ∈ [u′j,u

′′
j ]. This fact allows us to show alternative menus with higher levels of profits than the

conjectured equilibrium level must exist.
To see this, first let U+

j+1

(
uj
)

be the correspondence defined in the proof of Lemma 38. By our
induction assumption and Lemma 38, profits from types {j+ 1, . . . ,N} can be written as

µj+1
(
1 − π+ πFj+1

(
uj+1

))
Πj+1

(
uj,uj+1

)
+Π+

j+2

(
uj+1

)
where Π+

j+2

(
uj+1

)
are equilibrium profits constructed by applying Uk,j+1 as defined in Lemma 38. Note

that these profits are strictly supermodular in (uj,uj+1), and, as a result, U+
j+1(uj) is a strictly increasing

correspondence. Additionally, since Fj is flat over the interval [u′j,u
′′
j ], we must have that U+

j+1(u
′
j) and

U+
j+1(u

′′
j ) must have a common element (as in the proof of Lemma 28). Let uj+1 be this common element.

Let u′ be an equilibrium menu with j-th element given by u′j and (j+ 1)-th element given by uj+1
and u′′ be an equilibrium menu with j-th element given by u′′j and j+ 1-th element given by uj+1. Note
that a perturbation of u′ which increases u ′j by a small amount must not increase profits. Similarly, a
perturbation of u′′ which decreases uj ′′ by a small amount must not increase profits. Since Fj is flat on
[u ′j,u

′′
j ], non-positivity of these two perturbations imply

− µjFj
(
u′j
) vj − cj−1

cj − cj−1
+ µj+1Fj+1

(
uj+1

) vj+1 − cj+1

cj+1 − cj
= 0. (88)

As a consequence, profits obtained from any menu û, which is the same as u′ except at its j-th element
and has j-th element equal to uj ∈ [u′j,u

′′
j ], must yield the same profits as u′.

We now show that a perturbation from some such û must strictly increase profits. In particular,
consider a perturbation from û which increases uj+1 = ūj+1 by a small amount, ε. Since Fj+1 is strictly
increasing and continuous, the change in profits from this perturbation is given by

µj+1fj+1
(
uj+1

)
Πj+1

(
uj,uj+1

)
+ µj+1

(
1 − π+ πFj+1

(
uj+1

)) vj+1 − cj
cj+1 − cj

+
d

duj+1
Π+
j+2

(
uj+1

)
. (89)
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Since fj+1
(
uj+1

)
> 0 and Πj+1 is linear in uj the expression in (89) must be non-zero for some

uj ∈ (u′j,u
′′
j ). This implies some menu can strictly raise profits above the conjectured equilibrium

level and is a contradiction. Thus, Fj cannot have a flat.

Fj is continuous. Now suppose that Fj has a discontinuity at ûj. As in step 1, it must be that Πj
(
ûj−1, ûj

)
6

0. There are two possibilities: ûj = cj or ûj > cj. If ûj = cj, then a straightforward adaptation of the
argument in step 1—where we proved FN is continuous—can be applied to yield a contradiction. Hence,
consider the second case with ûj > cj. Notice immediately that Πj

(
ûj−1, ûj

)
must equal zero, since oth-

erwise a small decrease in ûj would strictly increase profits. Since there is a unique value ûj−1 such that
Πj
(
ûj−1, ûj

)
= 0, if Fj has a mass point at ûj, Fj−1 must also have a mass point at some ûj−1. Repeating

this argument implies that F1 must have a mass point, and this mass point must be at v1 since u1 = v1 is
the unique value such that Π1(u1) = 0.

Let u =
(
v1, . . . ûj−1, ûj,uj+1,Uj+2,j+1

(
uj+1

)
, . . . ,UN,j+1

(
uj+1

))
. Since the distribution functions

Fj+1, . . . , FN have no mass points, U+
j+1(ûj) = [u′j+1,u′′j+1] for some values u′j+1 and u′′j+1.

Let 1 6 k 6 j be the highest index for which φk 6= 0; recall, by assumption φ1 6= 0 so that k > 1. Now
consider two different perturbations from u where we perturb elements k through j according to

u− =
(
v1, . . . , ûk−1, ûk − ε, . . . ,u′j − ε,u ′j+1,Uj+2,j+1

(
u′j+1

)
, . . . ,UN,j+1

(
u′j+1

))
,

u+ =
(
v1, . . . , ûk−1, ûk + ε, . . . ,u′j + ε,u′′j+1,Uj+2,j+1

(
u′′j+1

)
, . . . ,UN,j+1

(
u′′j+1

))
.

For small ε, the change in the profits from the above perturbations are, respectively, given by

µk(1 − π+ πF−k (ûk))
vk − ck−1

ck − ck−1
+ µk+1(1 − π+ πF−k+1(ûk+1)) + · · ·+ µj(1 − π+ πF−j (ûj))

−µj+1(1 − π+ πF−j+1(u
′
j+1))

vj+1 − cj+1

cj+1 − cj
,

−µk(1 − π+ πF+k (ûk))
vk − ck−1

ck − ck−1
− µk+1(1 − π+ πF+k+1(ûk+1)) − · · ·− µj(1 − π+ πF+j (ûj))

+µj+1(1 − π+ πF−j+1(u
′′
j+1))

vj+1 − cj+1

cj+1 − cj
.

Since the distributions Fi are well behaved above and below each ûi, the strict rank preserving property
implies F−i (ûi) = Fj+1(u

′
j+1), and F+i (ûi) = Fj+1(u

′′
j+1) for all values of i 6 j. We may then write the

change in profits from the above perturbations, respectively, as

(1 − π+ πF−k (ûk))

j∑
i=k

µiφi,

−(1 − π+ πF+k (ûk))

j∑
i=k

µiφi.

Since k is the highest index below j for which φk 6= 0, one of the above expressions must be positive.
Therefore, one of the constructed menus increases profits, yielding a contradiction. The claim that
equilibrium is strictly rank-preserving then follows immediately from Lemma 38. �

A.10.3 Proof of Lemma 20

The monopsonist maximizes

µ1 (v1 − u1) +

N∑
i=2

µi

[
vi −

vi − ci−1

ci − ci−1
ui +

vi − ci
ci − ci−1

ui−1

]
=

N∑
i=1

µi (vi −φiui)
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subject to the monotonicity constraint

1 >
un − un−1

cn − cn−1
> · · · > ui+1 − ui

ci+1 − ci
>
ui − ui−1

ci − ci−1
... > 0. (90)

Given the linearity in payoffs and constraints, the solution to this problem is a single price offer, i.e.,
ui = cJ, i 6 J and ui = ci for i > J for some J ∈ {1, 2...N} ; see arguments in Myerson (1985b) and
Samuelson (1984). To see why J must be the largest integer such that

∑J−1
i=1 µiφi < 0, suppose otherwise,

i.e., ∃ k < J such that
∑k−1
i=1 µiφi < 0 and the monopsonist sets ui = ck for i 6 k and ui = ci for i > k.

Then, a deviation which increases all ui for i < J by ε changes profits by −ε
∑J−1
i=1 µiφi > 0. �

A.10.4 Proof of Lemma 21

To show that the best equilibrium menu satisfies ui = uJ for i < J, suppose by way of contradiction that
for some i < J, ui < uJ. The monotonicity constraint then implies that uJ > uJ−1; if uJ = uJ−1, then we
must have ui = ui−1 for all i < J. Now, consider an alternative menu that increases all the utilities of
types below J by ε. The probability of trade with any type does not change (since this is already the best
menu), the change in profits is given by −ε

∑ J−1
i=1µiφi, which is strictly positive by the definition of J in

(37).
To show that the worst equilibrium menu satisfies ui = ci for i > J, suppose by way of contradiction

that uJ+k > cJ+k for some k > 0. This inequality, together with repeated application of the monotonicity
constraint, implies that ui > ci for all i 6 J+ k. Now consider an alternative menu that lowers the utility
of all types below and including J+ k by ε. This does not change the probability of trade as the original
menu is the worst menu. However, the change in profits from captive types is ε

∑J+k
i=1 µiφi, which is

positive by the definition of J in (37). �

A.10.5 The Solution to the System of ODEs in (36)

The general solution to this system of equations depends on the sign of the profits from the lowest types,
v1 − u1. From (35), this profit is positive when φ1 > 0, and negative when φ1 < 0. In what follows, we
assume that the sequence γi =

vi−ci−1
ci−ci−1

φ1
φj

takes on different values for all i > 2, i.e., γi 6= γj.49 We thus
have the following general solution:

Ui =

i∑
k=0

ak,i (|v1 − u1|)
γk

with
γ0 = 0,γ1 = 1

where

a0,i =
vi (ci − ci−1)

vi − ci−1
+

vi − ci
vi − ci−1

a0,i−1

ak,i =
vi − ci
vi − ci−1

γi
γi − γk

ak,i−1

with

a0,1 = v1

a1,1 = sgn(v1 − u1)

49While it is possible to provide the general solution of the ODEs, this assumption greatly simplifies the formulation.
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where sgn is 1 if it’s argument is positive and −1 when it’s argument is negative.
In the above formulation, the variables {ai,i}

N
i=2 are unknown and have to be determined by the

boundary conditions in Lemma 21. To do this, for any value of u1 = minSupp(F1), we can use equation
(35) to solve for F1, with the boundary condition that u1. We can then find the value of u1, i.e., the upper
bound of the support of F1, using F1(u1) = 1. We refer to this value as ũ1(u1) as a function of u1. The
boundary conditions then are given by:

UJ(u1) = cJ, · · · ,UN(u1) = cN

U2(ũ1(u1)) = ũ1(u1), · · · ,UJ(ũ1(u1)) = ũ1(u1)

The above is a system of N− J+ 1 + J− 1 = N equations with N unknowns given by ai,iNi=2 and u1.
Solving this system of equations determines the equilibrium.

A.11 Construction of Equilibrium for the Insurance Model

The construction of equilibrium follows the logic of Section 4. For brevity, we focus on the region of
the parameter space where all equilibrium menus are separating and involve no cross-subsidization.
This obtains when the fraction of type-b agents, µb, is sufficiently large. The optimality conditions with
respect to ub and ug in this case are

πfb (ub)

1 − π+ πFb (ub)
Πb (ub) =C

′ (ub) −
µg

µb

[
θg (1 − θg)

θb − θg
C′
(
ung
)
−
θg (1 − θg)

θb − θg
C′
(
uag
)]

(91)

πfg (ug)

1 − π+ πFg (ug)
Πg (ub,ug) =

(1 − θg) θb
θb − θg

C′
(
ung
)
−
θg (1 − θb)

θb − θg
C′
(
uag
)

. (92)

These two differential equations, along with the boundary conditions Fj(uj) = 0 with uj ≡ θjw (y− d)+(
1 − θj

)
w (y), characterize the equilibrium. Note that these are similar in structure to (20), except that

the marginal cost of delivering utility varies with the level of utility (this was constant in the linear
model). To solve this system, we make use of the SRP relationship, Fb(ub) = Fg(Ug(ub)), which implies
fb(ub) = fg(Ug(ub))U

′
g(ub). Dividing the first differential equation by the second and using the SRP

identities, we obtain

Πb (ub)U
′
g(ub)

Πg (ub,Ug(ub))
=
C′ (ub) −

µg
µb

[
θg(1−θg)
θb−θg

C′
(
ung
)
−
θg(1−θg)
θb−θg

C′
(
uag
)]

(1−θg)θb
θb−θg

C′
(
ung
)
−
θg(1−θb)
θb−θg

C′
(
uag
) , (93)

where ung and uag are related to ub and Ug through (38). Equation (93) is thus an ordinary differential
equation in Ug, along with the boundary condition Ug(ub) = ug. Note that this does not depend on π.
Given Ug, equations (91) − (92) can be solved for the distribution functions.

Given a functional form for the utility function, w, this system can be solved numerically. Figure 10
depicts the solution for the following parameterization: w (c) =

√
2c, y = 10, d = 9, θb = 0.9, θg =

0.6, µg = 0.3. The left panel plots the equilibrium Ug, while the right panel shows the resource losses
associated with imperfect insurance—specifically, the function L(ub) from (39).

A.12 Type-Specific π

Since our proofs that Fh and Fl have no flat regions and Fh has no mass points immediately extend
to the case when πl 6= πh, we omit them in the interest of brevity. Hence, we begin by analyzing the
potential for mass point equilibria; that is, for Fl(·) to feature a mass point—to emerge when πl 6= πh.

Proposition 39. Suppose πl < πh. Then Fl(·) does not have a mass point.
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Figure 10: Effect of varying competition
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Proof. We prove a profitable deviation exists much as in the case when πl = πh. In particular, in any
such equilibrium with a mass point, Πl = 0 and the following inequalities must hold

−µh
(
1 − πh + πhF

−
l (ûl)

) vh − ch
ch − cl

+ µl
(
1 − πl + πlF

−
l (ûl)

)
6 0

µh
(
1 − πh + πhF

+
l (ûl)

) vh − ch
ch − cl

− µl
(
1 − πl + πlF

+
l (ûl)

)
6 0.

Rearranging the above, we must have

1 − πl + πlF
−
l (ûl)

1 − πh + πhF
−
l (ûl)

6
µh
µl

vh − ch
ch − cl

6
1 − πl + πlF

+
l (ûl)

1 − πh + πhF
+
l (ûl)

. (94)

Since F+l (ûl) > F
−
l (ûl) and πl < πh, then we must have that

1 − πl + πlF
−
l (ûl)

1 − πh + πhF
−
l (ûl)

>
1 − πl + πlF

+
l (ûl)

1 − πh + πhF
+
l (ûl)

which is a contradiction. �

Proposition 40. Suppose πl > πh. If a mass points exists, then Fl(vl) = 1.

Proof. First, it is immediate that a mass point cannot exist for any ul 6= vl. Hence, suppose by way
of contradiction that there is a mass on vl that is not full. Then either F−l (vl) > 0 or F+l (vl) < 1. Since
above and below vl, the equilibrium features no mass points, the equilibrium must also satisfy the strict
rank-preserving property. Let S = {(vl,uh)} and note that S must have positive measure. Furthermore,
the set S must be of the form {(vl,uh) : uh ∈ [uh, ūh]}. Note that we have, ūh > uh > ch > vl.

Therefore, in a neighborhood around S, all equilibrium menus should be separating. As a result,
they must satisfy the optimality condition with respect to ul—for values of ul ∈ [vl − ε, vl + ε] \ {vl} for
small but positive ε (depending on whether mass is above or below vl):

−µl (1 − πl + πlFl (ul)) + µlπlfl (ul) (vl − ul) + µh (1 − πh + πhFh (uh))
vh − ch
ch − cl

= 0.

Using SRP,

−µl (1 − πl + πlFl (ul)) + µlπlfl (ul) (vl − ul) + µh (1 − πh + πhFl (ul))
vh − ch
ch − cl

= 0.
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Therefore, if positive mass is above vl, we must have that

µh (1 − πh + πhFl (ul))
vh − ch
ch − cl

− µl (1 − πl + πlFl (ul)) > 0,

and if it is below,

µh (1 − πh + πhFl (ul))
vh − ch
ch − cl

− µl (1 − πl + πlFl (ul)) < 0.

From above, if mass point is to be an equilibrium property, the inequality (94) must hold:

1 − πl + πlF
−
l (vl)

1 − πh + πhF
−
l (vl)

6
µh
µl

vh − ch
ch − cl

6
1 − πl + πlF

+
l (vl)

1 − πh + πhF
+
l (vl)

<
πl
πh

. (95)

Now suppose that F+l (vl) < 1. Then, from the differential equation above,

Fl (ul)

[
µhπh

vh − ch
ch − cl

− πlµl

]
− µlπlfl (ul) (ul − vl) + µh (1 − πh)

vh − ch
ch − cl

− µl (1 − πl) = 0.

The general solution to the above differential equation is given by

Fl (ul) = A1 (ul − vl)
µhπh

vh−ch
ch−cl

−πlµl

µlπl +A2.

Since
µhπh

vh−ch
ch−cl

−πlµl

µlπl
< 0 from (95), the above expression approaches either ±∞ as ul approaches vl

from above. Hence, F+l (vl) < 1 cannot hold.
Now suppose that F−l (vl) > 0. Then, similar to above, we must have that

Fl (ul) = A1 (vl − ul)
µhπh

vh−ch
ch−cl

−µlπl

µlπl +A2.

As ul converges to vl, the above expression converges to ∞, which is in contradiction with F−l (vl) < 1.
This proves the claim.

�

A.12.1 Proof of Proposition 22

We have already shown a masspoint equilibrium, if it exists, must full mass at vl. Now, the worst menu
in a masspoint equilibrium (i.e., the one with the lowest uh) must set uh = ch (otherwise, lowering
uh strictly raises profits). By construction, a function Fh that satisfies (41) ensures equal profits at all
points in the support. To rule out other deviations, consider the payoff from offering u′l = vl − ε, u′h ∈
[uh, ūh] . The change in profits (per ε) satisfy

µl (1 − πl) − (1 − πh + πhFh)µh
vh − ch
ch − cl

=

[
1 −

(1 − πh + πhFh)

(1 − πl)

µh
µl

vh − ch
ch − cl

]
µl (1 − πl) .

It is sufficient to show that this is negative at the bottom, i.e., when Fh = 0, which leads to

1 −
(1 − πh)

(1 − πl)

µh
µl

vh − ch
ch − cl

< 0 ⇒ 1 − πl
1 − πh

< 1 −φ.

To rule out equilibria without masspoints, note that, in such an environment, the equilibrium is strictly
rank-preserving, so there must be a worst menu, i.e., one with Fl = Fh = 0. If it is a pooling menu, then
it must offer uh = ul = ch. In other words, Πl = vl − ch < 0. On the other hand, if it is a separating
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one, it must satisfy the FOC for ul :

πlfl
1 − πl + πlFl

Πl = 1 −

(
1 − πh
1 − πl

)
(1 −φl) < 0 ⇒ Πl < 0

i.e., the worst menu in a non-masspoint equilibrium must necessarily lose money on the low type. But
then, the best menu must also lose money, because

Πl (ūl) = vl − ūl < vl − ul < 0.

Now, consider a deviation of the form (ūl − ε, ūh) changes profits, relative to (ūl, ūh), by

µl − µh
vh − ch
ch − cl

− µlflΠl (ūl) = µlφ− flΠl (ūl) > 0

yielding the desired contradiction. Thus, in a masspoint equilibrium, the distribution of ul is degenerate
at vl, i.e., buyers make zero profits from type-l sellers. A buyer can deviate and offer a lower ul, but
that brings higher profits only from the captive l−types at the expense of lower profits from both captive
and noncaptive h−types. When the condition in part (1) of the proposition is satisfied, πl is sufficiently
high or equivalently, the fraction of captive l−types is too low to make such a deviation attractive.

A.13 Equilibrium with vertical differentiation

Here, we conjecture and characterize an equilibrium with vertical differentiation. We restrict atten-
tion to the region of the parameter space where both buyers offer separating contracts without cross-
subsidization. First, note that the upper and lower bounds of the distributions of both buyers must
coincide, i.e., the distributions of offers by both buyers have the same support. This then implies that F2

l

has mass of α at its lowest point cl. To see this, consider the equal profit condition for each buyer (recall
that all ties are resolved in favor of buyer 1):

(1 − π) (vl − cl) = Π (ūl, ūh)
(1 − π+ πα) (vl − cl +B) = Π (ūl, ūh) +B.

Solving, we obtain α = B
B+vl−cl

. Next, we posit that (i) U1
h(ul) is strictly increasing everywhere in

the support (ii) U2
h(ul) = ch for ul ∈ [cl, cl + s], s > 0. In the interval (cl + s,ul], U2

h(ul) is strictly
increasing. Formally, the distributions Fkj satisfy the strict rank-preserving conditions

F1
l(ul) = F1

h(U
1
h(ul)) ul ∈ [ul,ul] (96)

F2
l(ul) = F2

h(U
2
h(ul)) ul ∈ (cl+s,ul]. (97)

The optimality conditions for ul and uh for the two buyers yield:

πf2
l (ul)

1 − π+ πF2
l (ul)

Π1
l (ul) = 1 −

µh
µl

(
1 − π+ πF2

h

(
U1
h(ul)

)
1 − π+ πF2

l (ul)

)
vh − ch
ch − cl

(98)

πf2
h (uh)

1 − π+ πF2
h

(
U1
h(ul)

)Π1
h

(
ul,U2

h(ul)
)

=
vh − cl
ch − cl

(99)

πf1
l (ul)

1 − π+ πF1
l (ul)

(vl − ul) = 1 −
µh
µl

(
1 − π+ πF1

h

(
U2
h(ul)

)
1 − π+ πF1

l (ul)

)
vh − ch
ch − cl

(100)

πf1
h (uh)

1 − π+ πF1
h

(
U2
h(ul)

)Π2
h

(
ul,U2

h(ul)
)

=
vh − cl
ch − cl

. (101)

76



This system of equations (96) − (101), along with the boundary conditions

F1
l(cl) = F1

h(ch) = 0
F2
l(cl) = α

F1
l(ul) = F2

l(ul) = 1
F1
h(uh) = F2

h(uh) = 1
(1 − π) (vl − cl) =

(
1 − π+ πF1

l (cl + s)
)
(vl − cl − s) + (1 − π)Πh (cl + s, ch)

characterize the six unknown functions F1
l, F

2
l, F

1
h, F2

h,U1
h, and U2

h.
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