
WORKING PAPER NO. 16-07
UNIONS IN A FRICTIONAL LABOR MARKET 

Leena Rudanko 
Research Department 

Federal Reserve Bank of Philadelphia 

Per Krusell 
Stockholm University, Center for 

Economic and Policy Research, and 
National Bureau of Economic Research 

February 2016 



Unions in a Frictional Labor Market∗

Leena Rudanko

Federal Reserve Bank of Philadelphia

Per Krusell

Stockholm University, CEPR, and NBER

February 2016

Abstract

We analyze a labor market with search and matching frictions in which wage setting
is controlled by a monopoly union. Frictions render existing matches a form of firm-
specific capital that is subject to a hold-up problem in a unionized labor market. We
study how this hold-up problem manifests itself in a dynamic infinite horizon model
with fully rational agents. We find that wage solidarity, seemingly an important norm
governing union operations, leaves the unionized labor market vulnerable to potentially
substantial distortions because of hold-up. Introducing a tenure premium in wages may
allow the union to avoid the problem entirely, however, potentially allowing efficient
hiring. Under an egalitarian wage policy, the degree of commitment to future wages
is important for outcomes: With full commitment to future wages, the union achieves
efficient hiring in the long run but hikes up wages in the short run to appropriate
rents from firms. Without commitment, and in a Markov perfect equilibrium, hiring
is well below its efficient level both in the short and the long run. We demonstrate
the quantitative impact of the union in an extended model with partial union coverage
and multiperiod union contracting.
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1 Introduction

Labor unions play an important role in many labor markets in many countries. There
is also a large body of literature within labor economics focusing on how union presence
influences labor market outcomes. Yet, there is relatively little work studying the impact of
this institution on the labor market when this market is described as having frictions and
featuring unemployment due to these frictions. Since search and matching models have come
to play a central role as a workhorse for macroeconomic labor market analyses, this gap in the
literature leaves open important questions: What is the impact of unions on unemployment
and wages? How do unions affect how strongly unemployment varies over the business cycle?
What institutional settings are desirable, when considering rules regarding union coverage?

Our model can be interpreted as representing either the aggregate labor market or an industry
labor market, but in either case, we consider the case of a “large” union, which has monopoly
power over some group of workers. This case is particularly relevant for many European
economies, in which there is a nationwide union or cooperation/agreements among unions
representing different industries. It is also relevant in other settings in which workers cannot
easily move across industries and competition among different unions within an industry is
limited. We assume the union is fully rational, taking job creation into account when making
its wage demands, and its objective to be the welfare of all workers covered by union wages.

In our model, all workers have the same productivity and fulfill equally productive jobs.
We start with the view that union operations are governed by a norm of solidarity and
egalitarianism among workers, which leads us to the assumption that unions impose identical
wages across these workers. This view can be motivated in part by the broad empirical
evidence documenting that unions compress the distribution of wages. We find that such
fairness comes at a nontrivial cost, however, as it leaves the unionized labor market vulnerable
to a potentially severe hold-up problem, which leads to inefficiently high wages and low job
creation.

Under the egalitarian wage policy, the degree to which the union can commit to future
wages becomes qualitatively and quantitatively important for outcomes.1 If the union can
fully commit to future wages, it attains an efficient level of unemployment in the long run. In
the short run, however, unemployment is inefficiently high because the union uses its market
power to raise current wages above the efficient level, to extract rents from firms with pre-
existing matches. Specifically, we show that labor market tightness is inefficiently low in the
initial period but is efficient from then on. These elements give rise to a time inconsistency:
If a union had decided on a commitment plan yesterday, but had the opportunity to revise
it today, the union would indeed revise the plan to benefit again from preexisting matches.

What would happen if the union did not have commitment to future wages? What effects
would it have on the labor market? We answer this question by analyzing Markov perfect

1The degree of commitment to wages is important in hold-up problems in general, with full commitment
potentially avoiding the hold-up problem entirely. In the dynamic model with an egalitarian wage policy,
the situation is more involved, however, because even in the union problem with full commitment there are
some workers who were hired in the past and whose wages will in part be set after they have already been
hired.
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equilibria.2 In a calibrated model, the presence of the union raises wages by 12.5%, con-
sequently raising unemployment from 5% to 16.5%, and reducing output by 12%, relative
to efficient outcomes. The distortions associated with the union diminish as the duration
of union contracts increases, but this effect appears quantitatively weak; the effects remain
very similar as we vary duration from one to three years, viewed as the empirically relevant
range of union contract durations (Taylor 1983).

In a classic paper, Calmfors and Driffill (1988) reconsidered the impact of unions on the
level of aggregate economic activity. It has long been recognized that unions, through their
monopoly power in the labor market, tend to raise wages above their competitive levels, sug-
gesting that a greater union presence in the labor market has a primarily negative impact
on economic activity. Calmfors and Driffill (1988) propose an additional factor for under-
standing the cross-country evidence on unions: They argue that the degree of coordination
in union bargaining works to counteract the negative effects of monopoly power. Our model
generates a related hump-shaped relationship, which we illustrate in Section 4, where we
allow for partial union coverage of the workforce. Because union wages tend to be higher
than nonunion wages, greater union coverage tends to lead to higher unemployment in our
model as well. But greater union coverage also increases the extent to which the union
takes into account the effects of its wage demands on hiring, borne by union and nonunion
workers alike, leading to moderation in union wage setting. As we increase union coverage,
the second effect eventually takes over the first, leading to a hump-shaped relationship.

An important motivation for macroeconomists to consider unions has been the idea that
union wages are less responsive to shocks, potentially helping to understand the observed
variability of employment (see, e.g., Blanchard and Fischer 1989). The model we study in
Section 4 builds in significant stickiness in wages, because the union recontracts only every
one to three years. We demonstrate the substantial impact this has on shock propagation in
the model, with amplification in the responses of vacancy creation, employment, and output
to shocks.

Finally, while we view egalitarianism as a characteristic of union operations, we also show
that relaxing the egalitarian wage policy, for example by allowing a tenure premium in union
wages, can provide the union sufficient instruments to avoid the holdup problem, perhaps
entirely. In this case, the union extract rents from firms with high wages for senior workers,
while setting the wages of junior workers low enough to encourage hiring nevertheless. Unless
the union runs into a binding constraint on how low the wages of junior workers can be
(possibly negative), efficient hiring is attained. The model thus implies a rationale for a
tenure premium in union wages.

Related literature There are papers developing extensions of the Mortensen-Pissarides
model with a union/unions governing wage determination. Perhaps closest in spirit to our
paper is Pissarides (1986), which first introduces a monopoly union into the Pissarides (1985)
framework and studies the impact on equilibrium outcomes in the labor market. As with
the literature following it, Pissarides (1986) focuses on steady states, however, side-stepping

2Our focus is on differentiable Markov perfect equilibria. Thus, we do not consider other equilibria in which 
history matters, such as sustainable plans equilibria (Chari and Kehoe (1990)).
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the dynamic issues we highlight here. The more recent papers are more applied: Garibaldi
and Violante (2005) and Boeri and Burda (2009) study the effects of employment protection
policies; Ebell and Haefke (2006) study the effects of product market regulation; and Acikgoz
and Kaymak (2014) study the evolution of skill premia and unionization rates over time.
These papers generally adopt frameworks imposing exogenous wage compression into union
wage setting, with the exception of Taschereau-Dumouchel (2011), who develops a framework
where it is endogenous. Delacroix (2006) extends the framework of Ebell and Haefke (2006)
to capture the U-shaped relationship between the degree of coordination in union bargaining
and economic performance postulated by Calmfors and Driffill (1988).3

The paper is organized as follows: Section 2 begins with a brief overview of the empirical
evidence on unions. Section 3 analyzes the benchmark model: first, a one-period model to
provide intuition, and then an infinite-horizon model with and without commitment. Section
4 turns to a quantitative illustration in the context of an extended model, and Section 5
concludes.

2 Evidence on unions, wages and unemployment

Most workers in the OECD, outside the U.S., have their wages determined by union agree-
ments. This cross-country evidence is discussed by Nickell and Layard (1999), who report
that in most European countries, the share of workers covered by union wages exceeds 70%.
An important feature of the cross-country evidence is that union coverage rates—the share
of the labor force whose wages are determined by union wage bargaining—generally exceed
union membership rates outside the US. Even in countries in which union membership rates
are low, such as France, within firms many nonunion workers are paid the union wage, and
in many countries, union wages are legally extended to cover nonunion firms as well.4

In terms of the effects of unions, Nickell and Layard (1999) show that a cross-country re-
gression of unemployment on measures of union membership and coverage reveals a positive
relationship between union presence and unemployment. But there is also significant hetero-
geneity across countries in the degree of centralization and coordination in union bargaining,
as highlighted by Calmfors and Driffill (1988), and it turns out that this positive relationship
between union presence and unemployment can be partly offset by measures of coordination
in bargaining.

Nickell and Layard (1999) also report that union membership is associated with higher

3Lockwood and Manning (1989) and Modesto and Thomas (2001) have studied union wage setting in labor
markets in which firms face adjustment costs to labor, developing the idea that dynamic concerns become
important for thinking about union decision-making when labor markets are not fully frictionless. The simple
partial equilibrium quadratic adjustment cost framework adopted in these papers affords closed-form results
that speak to the level of union wage demands, as well as to the speed of adjustment in firm-level employment.
Our work brings these ideas into an equilibrium framework, which allows us to consider unemployment and
vacancy creation as well.

4Visser (2003) also documents union membership and coverage rates across countries, reporting an average
coverage rate of 73% across European countries for the period 1985-1997. While union membership has been
on the decline in Europe as well as in the U.S., coverage levels remain substantially higher in Europe.
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wages on the individual level across countries. An extensive literature has studied this
union/nonunion wage gap, using a variety of data sources and econometric approaches.
Lewis (1986) reviews the literature for the U.S., concluding that the evidence points to an
upper bound of 15% for the union wage gap. More recently, Blanchflower and Bryson (2003)
confirm that the estimates of the wage gap have remained relatively stable, with perhaps
a modest decline over time. They also report estimates across countries, noting that in
many European countries the extensive coverage of union wages reduces these gaps. An
important concern with the estimates of the union wage gap in general involves selection on
unobservables: It is likely that higher union wages attract better workers, but the data do
not allow these differences to be controlled for properly, biasing the estimates of the wage
gap. When DiNardo and Lee (2004) adopt a regression discontinuity design to get around
some of the issues, they find a negligible wage gap, seemingly contradicting a large body of
evidence.5

A robust finding appears to be that unions reduce wage inequality, compressing the distribu-
tion of wages (Card, Lemieux, and Riddell (2003)). Do they compress wages across degrees of 
seniority as well? Certainly formal pay scales appear to be common in union compensation 
practices, but arguably wages rise with tenure in nonunion settings as well. Perhaps because 
unions tend to compress the distribution of wages, a number of earlier studies have actually 
reported a stronger association between tenure and earnings in nonunion settings. But prop-
erly estimating returns to tenure is challenging and the comparison is confounded by the 
fact that the estimates tend to be biased by worker and job heterogeneity, generally found 
to be greater in nonunion than in union settings.6 Recognizing these challenges, Abraham 
and Farber (1988) find a stronger association between tenure and earnings in the unionized 
setting, supporting the idea that seniority plays an important role in union operations. At 
the same time, Topel (1991) finds no significant difference in returns to tenure based on 
union status. Again, data limitations leave us short of a conclusive answer, but the evidence 
in favor of overall wage compression does appear to be robust.

3 The model

This section begins with a description of the simple Mortensen-Pissarides search and match-
ing environment on which we base our analysis. We then introduce a monopoly union into
that framework and characterize its behavior.

A frictional labor market Time is discrete and the horizon infinite. The economy is
populated by a continuum of measure one identical workers, together with a continuum of
identical capitalists who employ these workers. All agents have linear utility and discount
the future at rate β < 1. Capitalists have access to a linear production technology, producing

5Their study focuses on close union election outcomes in the U.S. Of course, it is possible that wage gaps
in workplaces with close election outcomes are smaller than in those with clear-cut outcomes, and that wages
in newly unionized workplaces are different from those with an established union presence.

6The magnitude of returns to tenure is a debated topic; see, for example, Altonji and Williams (2005)
and Buchinsky, Fougre, Kramarz, and Tchernis (2010).
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z units of output per period for each worker employed. In addition to this market production
technology, unemployed workers also have access to a home production technology, producing
b(< z) units of output per period.

The labor market is frictional, requiring capitalists seeking to hire workers to post vacancies.
The measure of matches in the beginning of the period is denoted by n ∈ [0, 1], leaving 1−n
workers searching for jobs. Searching workers and posted vacancies are matched according
to a constant-returns-to-scale matching function m(v, 1 − n), where v is the measure of
vacancies. With this, the probability with which a searching worker finds a job within a
period can be written µ(θ) = m(θ, 1), and the probability with which a vacancy is filled
q(θ) = m(1, 1/θ), where θ = v/(1 − n) is the labor market tightness. We assume that
µ′(θ) is positive and decreasing and q′(θ) negative and increasing. With this, employment
equals n plus the measure of new matches, µ(θ)(1 − n). Jobs are destroyed each period
with probability δ. Thus, the measure of matches evolves over time according to the law of
motion

nt+1 = (1− δ) (nt + µ(θt)(1− nt))
︸ ︷︷ ︸

employed
t

. (1)

Firms Capitalists operate production through firms, and these firms need to post vacancies
to find workers, at a cost κ per vacancy. Competition drives profits from vacancy creation
to zero, with firms taking into account the union wage-setting behavior today and in the
future. The zero-profit condition thus determines the current market tightness according to
current and future wages {wt+s}∞s=0 as follows:

κ = q(θt)
∞∑

s=0

βs(1− δ)s
[
z − wt+s

]
. (2)

Union Wages are set unilaterally by a labor union, with universal coverage. The union
sets wages to maximize the welfare of all workers, with equal pay for all those employed.7

The union objective thus becomes

∞∑

t=0

βt
[ (

nt + µ(θt)(1− nt)
)

︸ ︷︷ ︸

employed
t

wt + (1− nt)(1− µ(θt))
︸ ︷︷ ︸

unemployed
t

b
]
. (3)

The union takes as given the evolution of employment according to equation (1). It also
internalizes the effect of its wage-setting decisions on hiring. Therefore, the union’s problem
is to choose a sequence of wages {wt}∞t=0 to maximize the objective (3) subject to the law of
motion (1) and zero-profit condition (2). The union must also respect the constraint that
the firms, at each point in time, make a nonnegative present value of profits on existing
matches, as they could simply end them otherwise. This is implied by positive vacancy
posting, however, because if firms posting vacancies break even, existing matches must have
strictly positive value.

7Note that if we normalize b = 0, then the union objective becomes the total wage bill.
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Summarizing the events in period t, we have

nt given

union sets wt

vacancy posting, vt

vt and 1− nt search

production

separations

Given the path of wages {wt}∞t=0, then, equation (2) determines the path of market tightness
{θt}∞t=0, which in turn determines the evolution of employment.

3.1 One-period example

To illustrate key forces at play, we first consider the impact of the union in a very simple
setting: a one-period version of the previous economy. Many features present here will be
present in the subsequent analysis.

Planner A natural starting point is the efficient benchmark—the output-maximizing level
of vacancy creation a social planner would choose. Here the planner solves the problem

max
θ

(
n + µ(θ)(1− n)
︸ ︷︷ ︸

employed

)
z + (1− n)

(
1− µ(θ)

)

︸ ︷︷ ︸

unemployed

b− θ(1− n)
︸ ︷︷ ︸

vacancies

κ,

taking as given preexisting matches n. The planner’s optimum is characterized by the first-
order condition −κ+µ′(θ)(z−b) = 0, which pins down θ independent of n. For concreteness,
consider the matching function m(v, u) = vu/(v+u), such that µ(θ) = θ/(1+θ). In this case,
the planner’s optimum is given by θp =

√

(z − b)/κ−1, with market tightness an increasing
function of market productivity. Of course, we must have z − b > κ for vacancy creation to
be optimal.

Union The union instead aims to maximize the welfare of workers
(
n+ µ(θ)(1− n)
︸ ︷︷ ︸

employed

)
w + (1− n)

(
1− µ(θ)

)

︸ ︷︷ ︸

unemployed

b,

by choice of w and θ, subject to the zero-profit condition: κ = q(θ)(z−w). The tradeoff the
union faces here is that while higher wages increase the welfare of employed workers, they
also reduce the job-finding probability because of reduced job creation.

To see how this problem relates to the planner’s problem, we can use the zero-profit condition
to solve for the wage, as w = z − κ/q(θ), and substitute it into the union objective to yield
a maximization problem in θ only:

max
θ

(
n+ µ(θ)(1− n)
︸ ︷︷ ︸

employed

)(
z − κ

q(θ)

)
+ (1− n)

(
1− µ(θ)

)

︸ ︷︷ ︸

unemployed

b

= max
θ

− nκ

q(θ)
︸︷︷︸

capitalists’ share

+
(
n+ µ(θ)(1− n)

)
z + (1− n)

(
1− µ(θ)

)
b− θ(1− n)κ

︸ ︷︷ ︸

planner’s objective

,
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also taking as given n.8 From the second line, we see that the union objective differs from
the planner’s objective only by the term − nκ

q(θ)
. To understand how the two objectives relate

to each other, recall that while the planner cares about all agents in the economy, the union
only cares about workers. The union objective thus equals the planner’s objective less the
capitalists’ share of total output: the profits on existing matches n(z −w) = nκ

q(θ)
, where the

equality follows from the zero-profit condition.

An interior union optimum is characterized by the first-order condition −κ + κ n
1−n

q′(θ)
q(θ)2

+

µ′(θ)(z−b) = 0, which implies that the union’s choice of θ does depend on n. In our example,
an interior union optimum is given by θ =

√
1− n

√

(z − b)/κ − 1. Labor-market tightness
is thus again an increasing function of market productivity but now decreases in preexisting
matches. Clearly, the union implements the socially optimal level of vacancy creation if
n = 0. But if n > 0, the union has an incentive to raise wages above the efficient level, to
appropriate surpluses from firms with existing matches.

Finally, note that a nonegalitarian union would instead solve the problem

max
θ,we,wn

nwe + µ(θ)(1− n)wn + (1− µ(θ))(1− n)b

s.t. q(θ)(z − wn) = κ,

we ≤ z,

where we allow the union to pay different wages to newly hired workers, wn, and workers
in existing matches, we. If we allow we 6= wn, it is immediately optimal to set we = z.
Substituting this into the union objective then yields the planner objective above, along
with the same condition for optimal hiring: −κ + µ′(θ)(z − b) = 0. With this market
tightness, the wage in new matches is then given by wn = z − κ/q(θ), implying a tenure
premium in union wages: wn < we.

This non-egalitarian case demonstrates that the inefficiency in the initial union problem
stems from the constraint to treat workers identically.9 The theory thus implies a rationale
for tenure premia in union wages, which could—in the absence of a binding lower bound on
the wages of junior workers—even allow the union to attain efficient hiring.

Next, we return to the dynamic infinite horizon setting, where the measure of initial matches
is endogenous.

8This substitution assumes some vacancy creation is optimal. The union could also opt to simply set
w = z in the original problem, achieving the value b + n(z − b) for the objective (forgoing vacancy costs
entirely). To ensure the solution in the text is optimal, it is necessary to make sure the value of the objective
exceeds this value.

9These distortions arise because search frictions render existing matches a form of firm-specific capital,
which is subject to a hold-up problem. As is typically the case, the degree of commitment to wages is
important for the severity of the hold-up problem. In the extreme case, if wages are set after vacancy
creation takes place (rather than before), the union would simply set (both) wages equal to z, with no new
hiring taking place. The timing here allows the union to commit to wages before vacancy creation, however,
making outcomes less severe.
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3.2 Efficient outcomes

To characterize union wage-setting when the time horizon is infinite, we again begin with the
efficient benchmark. The planner now chooses a sequence {θt}∞t=0, with θt ≥ 0, to maximize

∞∑

t=0

βt
[ (

nt + µ(θt)(1− nt)
)

︸ ︷︷ ︸

employed
t

z + (1− nt)(1− µ(θt))
︸ ︷︷ ︸

unemployed
t

b− θt(1− nt)
︸ ︷︷ ︸

vacanciest

κ
]

s.t. nt+1 = (1− δ) (nt + µ(θt)(1− nt))
︸ ︷︷ ︸

employed
t

,

with n0 given.

For what comes later, it will be useful to formulate problems recursively. Thus, we begin by
writing the planner’s problem recursively and discussing efficient vacancy creation in that
context. The recursive form for the planner’s problem reads

V p(n) = max
θ

(
n+ µ(θ)(1− n)

)
z + (1− n)

(
1− µ(θ)

)
b− θ(1− n)κ + βV p

(
N(n, θ)

)
, (4)

where N(n, θ) ≡ (1 − δ)
(
n + µ(θ)(1 − n)

)
. Notice that the state variable is n, the number

of matches at the beginning of the period, and that the control variable—market tightness
θ—determines n′ according to the law of motion N(n, θ).

The first-order condition, assuming an interior solution, is

κ = µ′(θ)
(
z − b+ β(1− δ)V p′

(
n′
))
. (5)

It equalizes the cost of an additional vacancy, κ, to its benefits: an increase in matches
of µ′(θ), with each new worker delivering the flow surplus z − b today, together with a
continuation value reflecting future flow surpluses.

The envelope condition gives the value of an additional beginning-of-period match, as

V p′(n) = (1− µ(θ) + θµ′(θ))
(
z − b+ β(1− δ)V p′(n′)

)
. (6)

This value takes into account that the increase in initial matches hampers current hiring by
shrinking the pool of searching workers. To see this in the expression, note that the derivative
of the matching function with respect to unemployment, mu(θ, 1), equals µ(θ)− θµ′(θ).

Eliminating the derivative of the value function in (5), we arrive at the Euler equation

κ

µ′(θ)
= z − b+ β(1− δ)

(
1− µ(θ′) + θ′µ′(θ′)

) κ

µ′(θ′)
. (7)

This equation states the efficiency condition for the Mortensen-Pissarides model, solving
a tradeoff between the costs and benefits of creating a new match today. The cost of an
additional match today is κ/µ′(θ): the cost of a vacancy, κ, times the measure of vacancies
required for one match.10 The benefits of an additional match include the flow surplus z− b

10Since a unit increase in vacancies increases market tightness by 1/(1− n) units, and a unit increase in
market tightness yields (1− n)µ′(θ) new matches, one new vacancy creates µ′(θ) new matches.
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today, together with the expected value of the match next period. The expected value takes
into account that the match survives to the next period with probability 1− δ, and that the
increase in matches shrinks the pool of searching workers tomorrow, so that any planned
vacancy creation next period will yield fewer matches, leading to a net increase in matches
of 1− µ(θ′) + θ′µ′(θ′). Finally, the value of a match tomorrow is again given by κ/µ′(θ′).

Note that the planner’s Euler equation does not feature the state variable n explicitly at all, so
a natural guess for the solution is a constant tightness independent of n. It is straightforward
to show that the planner’s value function is linear in n, and the efficient allocation is thus
characterized by a constant market tightness θt = θp, for all t ≥ 0.

3.3 A union with commitment

Turning to the unionized labor market, consider the problem of the egalitarian union choosing
a sequence of wages {wt}∞t=0 to maximize the objective (3) subject to the law of motion (1)
and zero profit condition (2) holding at each point in time.

To relate the union problem to the planner’s problem, we again use the zero-profit conditions
to rewrite the union objective. To this end, note that the union’s choice of a sequence of
wages determines, at each instant, the expected present value of union wages paid out over
the course of an employment relationship: Wt =

∑
∞

s=0 β
s(1−δ)swt+s. The sequence {Wt}∞t=0

further pins down the sequence {θt}∞t=0 through the zero-profit conditions, assuming some
vacancy creation occurs each period. Conversely, given a sequence {θt}∞t=0, one can back out
per-period wages by first using the zero-profit condition to find Wt each period, and then
computing wages as wt = Wt − β(1− δ)Wt+1.

Using the zero-profit condition to eliminate wages, the union objective (3) can be written
as:

− n0κ

q(θ0)
+

∞∑

t=0

βt[
(
nt + µ(θt)(1− nt)

)
z + (1− nt)(1− µ(θt))b− θt(1− nt)κ], (8)

revealing an identical objective to that of the planner except for the first term.11 This term—
familiar from the one-period example—reflects the share of the present discounted value of
output accruing to capitalists. To see this, note that the capitalists’ share, i.e., the present
value of profits to firms, can be written as

n0

∞∑

t=0

βt(1− δ)t[z − wt] +

∞∑

t=0

βt[µ(θt)(1− nt)

∞∑

s=0

βs(1− δ)s[z − wt+s]− θt(1− nt)κ]. (9)

Here, the first term captures the present value of profits on existing matches, and the second
those on new vacancies created in periods t = 0, 1, . . .. The expression reduces to representing
initial matches only, however, as free entry drives the present value of profits to new vacancies
to zero.12 Preexisting matches, on the other hand, are due a strictly positive present value

11See Appendix A.
12We can write the second term in equation (9) as

∑
∞

t=0
βt(1−nt)θt[q(θt)

∑
∞

s=0
βs(1− δ)s[z−wt+s]− κ],

which equals zero because of the free entry condition (2).
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of profits, because these firms paid the vacancy cost in the past, anticipating positive profits
in the future to make up for it. Using the zero-profit condition, this remaining present value
can be expressed as n0κ/q(θ0).

The union objective (8) reflects the fact that while the planner maximizes the present dis-
counted value of output, the union only cares about the workers’ share of it. As a result,
the union will have an incentive to appropriate some of this present value from capitalists
by raising wages above the efficient level—and this is exactly how the solutions to the two
problems will differ.

Proposition 1. If the union is able to commit to future wages, hiring is efficient after the
initial period. In the initial period, hiring is efficient if n0 = 0 and below efficient if n0 > 0.

Note that after the initial period, the union effectively solves the planner’s problem (4), and
consequently chooses the planner’s solution θt = θp ∀t ≥ 1. In the initial period, however,
the union chooses θ0 to maximize

− n0κ

q(θ0)
+
(
n0 + µ(θ0)(1− n0)

)
z + (1− n0)

(
1− µ(θ0)

)
b− θ0(1− n0)κ+ βV p

(
N(n0, θ0)

)
,

(10)

where n0 is given, and V p solves the planner’s problem (4).13

Deriving the optimality condition for this initial period is straightforward, using the same
methods as above. It becomes

[1− n0

1− n0

q′(θ0)

q(θ0)2
]

κ

µ′(θ0)
= z − b+ β(1− δ)

(
1− µ(θp) + θpµ′(θp)

) κ

µ′(θp)
, (11)

where we have used the fact that in subsequent periods we will have the efficient market
tightness θp. Comparing with the efficiency condition (7), the cost of creating an additional
match today (on the left) is higher for the union than for the planner. This occurs because in
order to increase hiring, the union must lower wages, giving up some of the surplus it could
have appropriated from firms with existing matches. Moreover, the more existing matches
there are, the greater this additional cost.

Using the efficiency condition (7), we can further rewrite equation (11) as

[1− n0

1− n0

q′(θ0)

q(θ0)2
]

1

µ′(θ0)
=

1

µ′(θp)
.

Because q′(θ) < 0 and µ′(θ) is decreasing, this equation implies that the market tightness
will generally be lower in the initial period than the efficient value it takes on after that,
and the more initial matches, the lower its initial value. Thus, as in the one-period example,
the initial market tightness depends negatively on the measure of existing matches. This is

13Again, using the zero-profit condition to substitute out wages assumes positive vacancy creation each
period. The union could, as an alternative, also choose to set the initial present value of wages so high as to
shut down hiring in the first period entirely, allowing matches to depreciate. This becomes more attractive
when initial matches are plentiful.
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a key feature of the model, which becomes even more important when the union does not
have commitment.

That the outcome in the initial period differs from later periods reflects a time inconsistency
issue in the union wage-setting problem. If the union were to reoptimize after the initial
period, it would face a different objective and choose a different path of wages. While
the union can thus get relatively close to the efficient outcome when it can commit, this
immediate time inconsistency begs the question: What happens if the union cannot commit
to future actions? To study time-consistent union decision-making, we next turn to a game-
theoretic setting, which will be based on the recursive formulation of the union problem we
set up above.

3.4 A union without commitment

The union problem (10) suggests that if the union were to reoptimize at any date, its choice
of initial θ would depend on n, the measure of matches in the beginning of the period.
In particular, a higher n should imply a lower θ. How would outcomes change if the union
could not commit to not reoptimizing? We study this question by focusing on (differentiable)
Markov perfect equilibria with n as a state variable. That n is a payoff- and action-relevant
state variable should be clear from the problem under commitment.14 In a Markov perfect
equilibrium, the union anticipates its future choices of θ to depend (negatively) on n, a
relationship we label Θ(n). Our task, then, is to characterize Θ(n).

The function Θ(n) solves a problem similar to (10), namely

Θ(n) ≡ argmax
θ

− nκ

q(θ)
+
(
n+ µ(θ)(1− n)

)
z + (1− n)(1− µ(θ))b− θ(1− n)κ + βV

(
N(n, θ)

)
,

(12)

where the continuation value V satisfies the recursive equation

V (n) =
(
n+ µ(Θ(n))(1− n)

)
z + (1− n)(1− µ(Θ(n)))b−Θ(n)(1− n)κ+ βV

(
N(n,Θ(n))

)
.

(13)

Here, the union recognizes that its future actions will follow Θ(n), and this is reflected in the
continuation value V (n). Because Θ(n) will generally not be efficient, V (n) will not equal
V p(n), the continuation value under commitment.

AMarkov perfect equilibrium is defined as a pair of functions Θ(n) and V (n) solving (12)–(13)
for all n. We will assume that these functions are differentiable and characterize equilibria
based on this assumption.

From equation (12), the first-order condition for market tightness becomes

[1− n

1− n

q′(θ)

q(θ)2
]κ = µ′(θ)

(
z − b+ β(1− δ)V ′

(
n′
))
, (14)

14One can add states, representing histories of past behavior, but we do not consider such equilibria here.
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and the equation paralleling the envelope condition—now not formally an envelope condition
since the union does not agree with its future decisions—becomes

V ′(n) =(1− µ(θ) + θµ′(θ))
(
z − b+ β(1− δ)V ′(n′)

)

+ µ′(θ)
(
Θ′(n)(1− n)− θ

)(
− n

1− n

q′(θ)

q(θ)2
κ

µ′(θ)

)
. (15)

Equation (15) is derived by differentiating equation (13) and using equation (14) to arrive
at a formulation close to the equivalent condition (6) for the planner. Compared with the
planner’s envelope condition, this equation includes some additional terms, which appear
because the envelope theorem does not hold. These terms work to reduce the value of
additional initial matches n, as the union sets the market tightness too low—following Θ(n)—
and to an extent that increases in n.

We can further combine the above two equations to eliminate V ′, obtaining

[1− n

1− n

q′(θ)

q(θ)2
]

κ

µ′(θ)
︸ ︷︷ ︸

cost of match today

= z − b+ β(1− δ)[
(
1− µ(θ′) + θ′µ′(θ′)

)
[1− n′

1− n′

q′(θ′)

q(θ′)2
]

κ

µ′(θ′)
︸ ︷︷ ︸

value of match tomorrow

+ µ′(θ′)(Θ′(n′)(1− n′)− θ′)(− n′

1− n′

q′(θ′)

q(θ′)2
)

κ

µ′(θ′)
︸ ︷︷ ︸

loss in value from lack of commitment

],

(16)

which is a generalized Euler equation. It is a functional equation in the unknown policy
function Θ, where the derivative of Θ appears. The equation is written in a short-hand
way: θ is short for Θ(n), θ′ is short for Θ(N(n,Θ(n))), and n′ is short for N(n,Θ(n)). The
task is to find a function Θ that solves this equation for all n. Note that in contrast to the
planner’s Euler equation, n appears nontrivially in this equation and will generally matter
for the tightness. It is easily verified that a constant Θ will not solve the equation.

Equation (16), as with the planner’s Euler equation (7), represents the tradeoff between the
costs and benefits of creating matches today. The cost of an additional match for the union
exceeds the cost for the planner, however, because in addition to the increase in vacancy
costs κ/µ′(θ), the union also takes into account that increasing hiring requires reducing wages,
thereby giving up some of the surplus it could have appropriated from firms, captured by
the term: − n

1−n

q′(θ)
q(θ)2

κ
µ′(θ)

. This additional cost appears also in the Euler equation (11) for
the union with commitment, but here it appears both today and tomorrow symmetrically,
unlike in the commitment solution where tomorrow’s union simply carries out today’s plan.
Beyond this difference, the union also takes into account its inability to commit to future
wages: Creating more matches today will reduce hiring tomorrow, as tomorrow’s union will
raise wages to exploit those matches. A marginal increase in matches reduces hiring by
µ′(θ)(Θ′(n)(1− n)−Θ(n)), with each lost worker valued at the size of the distortion in the
union objective—the marginal surplus appropriated from capitalists.15

15To see this, note that the measure of vacancies can be written as Θ(n)(1 − n) and its derivative with
respect to initial matches n as Θ′(n)(1 − n)−Θ(n).
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Note that equation (16) differs from standard Euler equations in that the derivative of the
function Θ appears in the equation. This means that even solving for a steady state will
be more complicated than usual, requiring information about the shape of the Θ function.
By a steady state, we mean a level of initial matches n and corresponding market tightness
θ = Θ(n) such that the law of motion maintains the same level of matches: N(n,Θ(n)) = n.
In this case, we cannot simply use equation (16) together with the law of motion to solve for
a steady state (n, θ)-pair because the derivative appears as an additional unknown.

It is hard to establish theoretically that Θ(n) is indeed decreasing. In the one-period example
of Section 3.1, we saw that Θ becomes a decreasing function of n, and in our numerically
solved examples below, this also holds. What is possible to show for the infinite-horizon
case, however, is that whenever Θ(n) is decreasing, steady-state market tightness is strictly
below its efficient level.

Proposition 2. If Θ(n) is decreasing in n, then the steady-state market tightness, θ, in the
unionized labor market (without commitment) is strictly below its efficient level.

It follows that steady-state unemployment in the unionized labor market is strictly above its
efficient level.

3.5 A nonegalitarian union

If we relax the equal pay constraint by allowing the union to pay different wages to newly
hired workers (wn

t ) and workers in existing matches (we
t ), then the union objective becomes

∞∑

t=0

βt
[
ntw

e
t + µ(θt)(1− nt)w

n
t + (1− nt)(1− µ(θt))b

]
, (17)

and the zero-profit condition

κ = q(θt)
[
z − wn

t +
∞∑

s=1

βs(1− δ)s(z − we
t+s)

]
. (18)

In this case we must also impose a separate condition ensuring firms make a nonnegative
present value of profits on existing workers:

∞∑

s=0

βs(1− δ)s(z − we
t+s) ≥ 0, ∀t ≥ 0. (19)

The nonegalitarian union chooses two sequences of wages, {wn
t }∞t=0 and {we

t}∞t=0, to maximize
the objective (17) subject to the law of motion (1), zero-profit conditions (18), and constraints
(19) holding at each point in time.

In setting the wages of existing workers, the best the union can do is to set we
t = z each

period, leaving firms with zero surplus on existing matches. From the zero-profit condition
then, we have that wn

t = z−κ/q(θt), ∀t ≥ 0. Using this expression to substitute out wages in
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the union objective, it is easy to see that the union problem becomes identical to the planner
problem, thus leading to efficient hiring: θt = θp, ∀t ≥ 0. The solution therefore involves a
constant and efficient market tightness over time, as well as constant wages that exhibit a
tenure premium: wn

t = z − κ/q(θp) and we
t = z ∀t ≥ 0.

Thus, we conclude that in the infinite horizon setting as well, the union may be able to
attain efficient hiring through a wage tenure premium. A potential concern is that the
implied wages of new workers may be quite low—they need to be low enough to allow firms
to make the entire present value of profits associated with efficient hiring in the first period
of the match. In the presence of a binding lower bound on the wages of junior workers,
the union wage policy will still involve a tenure premium, but the market tightness will be
distorted down.

In sum, wage solidarity comes at a cost in this economy, suggesting a role for tenure premia
in union wages as a means to avoid the resulting distortions in hiring. And yet, the empirical
evidence does not point to clearly greater returns to tenure in unionized settings. Is this
simply because of the measurement problems involved in the empirical work? Or are the
distortions perhaps too insignificant in magnitude to warrant giving up (the benefits underly-
ing) wage solidarity? To shed light on this question, the next section turns to a quantitative
illustration looking at the impact of the egalitarian union on labor market outcomes.

4 Quantitative illustration

The presence of an egalitarian union affects the levels and dynamics of wages, unemployment,
and output in the economy. In this section, we illustrate these effects, in the context of an
extended model.

4.1 Extended model

For added realism, we first lay out an extended model which incorporates partial unionization
of the labor market and multiperiod union contracting. To this end, we assume that: i) a
fraction α of workers are covered by union wages, with a worker’s union status fixed over time,
while the rest bargain their wages individually, and ii) instead of the union recontracting
each period, it recontracts in any given period with probability λ, implying that contracts
are expected to last 1/λ periods.16

For the nonunion workers in the labor market, we can write standard Bellman equations,
which can then be used to derive the following equation for the match surplus:

St = z − b+ β(1− δ)(1− µ(θt+1)γ)St+1. (20)

16We assume the search is undirected, an assumption that plays a key role in the discussion in Section 4.4.
If the search were fully directed, based on union status, the market would separate into two independent
parts: one that follows the full unionization model and one following the standard Mortensen-Pissarides
model.
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The equation uses the fact that nonunion workers bargain their wages individually, such
that the bargaining outcome divides the match surplus according to the workers’ bargaining
power γ: Workers get γSt and firms (1−γ)St.

17 Note that the surplus equation (20) depends
on the union’s actions only through the market tightness.

The firms’ zero-profit condition can then be written to reflect the presence of both union
and nonunion workers in the labor market as

κ = q(θt)[α(
z

1− β(1− δ)
−Wt) + (1− α)(1− γ)St]. (21)

As the right-hand side states, firms expect a present value of profit of (1− γ)St on the 1−α
non-union workers, and a present value of profit of z/(1 − β(1 − δ)) − Wt on the α union
workers. The latter hinges on the expected present value of union wages paid out over the
course of an employment relationship: Wt =

∑
∞

s=0 β
s(1− δ)swt+s.

We can then think about how union wages {wt}∞t=0 are determined; we return to the union
objective in equation (3). As before, we can rewrite this objective using the zero-profit
condition (21), arriving at the expression

∞∑

t=0

βt[(nt + µ(θt)(1− nt))z + (1− µ(θt))(1− nt)b− θt(1− nt)
κ

α
+

1− α

α
(1− γ)µ(θt)(1− nt)St]

− n0κ

αq(θ0)
+

1− α

α
(1− γ)n0S0. (22)

Comparing this expression with the corresponding expression (8) earlier, note that with
partial unionization, the nonunion surpluses enter into the union objective because of their
impact on vacancy creation.

Next, we would like to implement multiperiod contracting in this setting, aiming for a recur-
sive representation that we could use to solve the model, as before. Note that as far as union
wages are concerned, the object of interest for both the union and the firms is the expected
present value of wages paid out over the course of an employment relationship, Wt. This
present value determines the profitability of hiring union workers, governing vacancy cre-
ation through equation (21). In this sense, the allocative measure of wages here is Wt. What
we would like to do, then, is to specify that in periods when the union does not recontract,
Wt is held fixed, while in periods when the union does recontract, Wt is reoptimized. With
full unionization, this would imply that in periods when the union does not recontract, θt
remains fixed, while in periods when the union does recontract, θt adjusts (due to equation
(21)). With partial unionization, this need not hold exactly, because of the presence of the
nonunion surpluses in the zero-profit condition. However, it turns out to be clearly simpler
to solve the partial union model under the specification that what the union holds fixed in
nonrecontracting periods is θt directly.

18 This also appears a reasonable approximation to

17See Appendix B for a derivation.
18Solving the partial union model with Wt held fixed leads to systems of nonlinear equations for the

nonunion surpluses and their derivatives, while the current specification instead yields linear equations
allowing analytical solutions, which is attractive from the point of view of minimizing error associated with
numerical complexity.
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holding Wt fixed, in the sense that changes in Wt during nonrecontracting periods appear
minor compared with the adjustments upon recontracting. With these concerns in mind, we
proceed under the specification that what is held fixed in periods when the union does not
recontract is θt.

19

To arrive at a recursive representation characterizing labor market outcomes, then, we first
must write down recursive versions of the equations for the nonunion surpluses. Based on
equation (20), for periods when the union recontracts, we have:

Sr(n) = z − b+ β(1− δ)[λ(1− µ(Θ(N(n,Θ(n))))γ)Sr(N(n,Θ(n)))

+ (1− λ)(1− µ(Θ(n))γ)Sf(N(n,Θ(n)),Θ(n))], (23)

and for periods when the union does not recontract, we have:

Sf(n, θ) = z − b+ β(1− δ)[λ(1− µ(Θ(N(n, θ)))γ)Sr(N(n, θ))

+ (1− λ)(1− µ(θ)γ)Sf(N(n, θ), θ)]. (24)

Note that in periods when the union does not recontract, the market tightness is held fixed,
while in periods when the union does recontract, the tightness is determined via the equi-
librium function Θ(n). Union decision-making in recontracting periods then determines the
function Θ(n) as the solution to the problem:

Θ(n) ≡ argmax
θ

(n+ µ(θ)(1− n))z + (1− µ(θ))(1− n)b− θ(1− n)
κ

α
− nκ

αq(θ)

+
1− α

α
(1− γ)(n+ µ(θ)(1− n))Sr(n) + βλV r

(
N(n, θ)

)
+ β(1− λ)V f

(
N(n, θ), θ

)
,

(25)

where the union value satisfies

V r(n) = (n+ µ(Θ(n))(1− n))z + (1− µ(Θ(n)))(1− n)b−Θ(n)(1− n)
κ

α

+
1− α

α
(1− γ)µ(Θ(n))(1− n)Sr(n) + βλV r

(
N(n,Θ(n))

)
+ β(1− λ)V f

(
N(n,Θ(n)),Θ(n)

)

(26)

in recontracting periods, and

V f(n, θ) = (n + µ(θ)(1− n))z + (1− µ(θ))(1− n)b− θ(1− n)
κ

α

+
1− α

α
(1− γ)µ(θ)(1− n)Sf(n, θ) + βλV r

(
N(n, θ)

)
+ β(1− λ)V f

(
N(n, θ), θ

)

(27)

in nonrecontracting periods. These equations follow from the union objective (22) as before.

Next, we move on to calibrating and illustrating the impact of unions in the context of this
model. The focus will, for the most part, be on steady states: A level of initial matches n
and a corresponding tightness θ = Θ(n), such that N(n, θ) = n. With this level of initial
matches, if the union recontracts today, it will keep the market tightness unchanged, leading
to the same level of initial matches next period.

19This distinction matters only for Section 4.4, which allows partial union coverage.
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4.2 Calibration and solution approach

We parameterize the model such that the efficient outcome corresponds to the U.S. labor
market and study how introducing the union changes outcomes in this market.20 The period
length is set to one month, and the discount rate to correspond to a 5 percent annual rate of
return, with β = 1.05−12. We normalize labor productivity to z = 1 and set b = 0.4.21 We
adopt the matching function m(v, u) = µ0vu/(v + u), as in den Haan, Ramey, and Watson
(2000). We pin down the remaining parameters δ, κ, and µ0, as follows: First, attaining
an average duration of employment of 2.5 years requires a separation rate of δ = 0.033.
Second, to be consistent with a steady-state unemployment rate of 5 percent, the average
job-finding rate must be µ(θ) = 0.388. Finally, to also match the slope of the Beveridge
curve, documented by Shimer (2007) to equal −1, this requires setting µ0 = 0.652 and a
steady-state value of θ = 1.47. The latter can be achieved by setting κ = 0.109.

The basic Mortensen-Pissarides model is straightforward to solve, as is the planner problem
previously discussed. The union problem without commitment is clearly more challenging,
however. Issues to bear in mind include the fact that there are few results on the existence
of equilibrium for differentiable Markov perfect equilibria; that these equilibria may not be
unique and that nondifferentiable equilibria may exist as well.22 In solving for a differentiable
equilibrium, a natural starting point would be the generalized Euler equation of the problem.
In our case, the complexity of the system (23–27) does not allow us to derive such an
equation explicitly, but it turns out that we can proceed along the same lines without this
formal step. The focus will be on steady states; to solve for them, we adopt the approach of
Krusell, Kuruscu, and Smith (2002), which looks for a Taylor expansion approximation to the
unknown function Θ(n) around the steady state. The approach involves solving successively
larger systems of equations based on the first-order condition (and successive derivatives of
the first-order condition) of problem (25), looking for convergence in the coefficients of the
polynomial as the order increases. A description of how we implement this approach here
can be found in Appendix C. The next sections describe the results.

4.3 Level effects

We begin by looking at the impact that introducing the union has on the levels of wages,
unemployment, and output, relative to the efficient outcome, in the case of full coverage.

According to the theory, the duration of union contracts should play a role in determining
how large the distortions associated with the union are. Available evidence seems to point

20For consistency, the parameterization strategy follows that described in Shimer (2005), aside from adopt-
ing a matching function which is better suited for a discrete time model. He calibrates a decentralized labor
market to the U.S. labor market, but the calibration strategy implies that the equilibrium outcome coincides
with the socially optimal one.

21The results do not change substantially if we raise this to b = 0.75.
22For examples where no differentiable equilibria exist but a nondifferentiable equilibrium does, see Krusell,

Martin, and Rios-Rull (2005), and for examples with a continuum of nondifferentiable equilibria along with
one or more differentiable ones, see Krusell and Smith (2003); Phelps and Pollak (1968) focus on differentiable
equilibria and find multiplicity as well.
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to one to three years as the relevant range of union contract durations, so we begin by
setting λ = 1/24, implying an expected duration of union contracts of two years.23 With
this contract duration, introducing the union into the labor market raises wages by 12.5
percent, leading to an increase in unemployment from 5 to 16.5 percent, and a reduction in
output of 12 percent, relative to efficient outcomes. As expected, wages and unemployment
thus rise, leading to lower output, but the calculation reveals the quantitative impact to be
substantial as well.
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Figure 1: Level Effect of Union
Notes: The figure plots steady-state wages, unemployment, and output, as a function of the expected 
duration of a union contract 1/λ.

To see how the union impact depends on contract duration, Figure 1 plots the steady-state
levels of wages, unemployment, and output as a function of the expected duration, 1/λ. The
benchmark in the figure—the efficient outcome—is naturally independent of λ. The figure
shows that the impact of the union diminishes as contract duration increases, as we would
expect. But the figure also reveals that for the relevant range of contract durations this
effect turns out to be rather weak. Even though there is a visible decrease in unemployment
as contract duration increases from one to three years, the magnitude of this decrease is
overshadowed by the overall level effect associated with the union.24

Finally, recall that the decentralized outcome in the Mortensen-Pissarides model is efficient
only if the private bargaining power of workers coincides with the one implementing efficient
allocations (Hosios 1990). The value of the bargaining power parameter is difficult to infer
from available data, however, so even though many researchers have chosen to calibrate it

23For example, for the U.S., Taylor (1983) considers one to three years as the relevant range of union
contracts, Card (1990) documents an average contract duration of 26 months, and Rich and Tracy (2004)
a median duration of 36 months. Fregert and Jonung (2006) document similar durations for Sweden, and
Avouyi-Dovi, Fougere, and Gautier (2013) an average duration of just under a year for France.

24Note that there is no reason to expect the union outcome to converge with the efficient one as the duration
of contracts approaches infinity: Recall that in the commitment union problem analyzed in Section 3.3, the
union distorts θ down in the initial period but attains the efficient θ thereafter. This multiperiod contracting
specification, on the other hand, constrains θ to remain fixed between recontracting periods. Thus, it would
seem natural for the union to set this fixed tightness above the efficient level when recontracting.
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to guarantee efficient allocations, we do not have a good sense of the correct value of this
parameter. And if the private bargaining power turns out to be high relative to the one im-
plementing efficient allocations, unemployment will be above efficient also in a decentralized
market without a union. We return to this issue in the next section, which turns to the case
of partial union coverage.

4.4 Union coverage

In a classic paper, Calmfors and Driffill (1988) reconsider the impact of unions on the level
of economic activity. It has long been recognized that unions, through their monopoly power
in the labor market, tend to raise wages above their competitive levels. This suggests that
a greater union presence in the labor market has a primarily negative impact on economic
activity, as high union wages lead to higher unemployment. Calmfors and Driffill (1988)
propose an additional factor for understanding the cross-country evidence on unions: They
argue that the degree of coordination in union bargaining works to counteract the negative
effects of monopoly power. A related hump-shaped relationship emerges in our model as
well, as we vary the coverage of union wages across the workforce.

Two competing forces come to play in the model as we vary union coverage: First of all,
because union wages tend to be higher than nonunion wages, greater union coverage tends
to lead to higher unemployment in our model as well. But at the same time, limiting union
coverage also introduces an additional distortion into the model because the union no longer
fully internalizes the effects of its wage demands on hiring, borne by union and nonunion
workers alike. Greater union coverage increases the extent to which the union takes into
account the effects of its wage demands on hiring, leading to moderation in union wage
setting. As we increase union coverage, the second effect eventually takes over the first,
leading to a hump-shaped relationship between coverage and unemployment.
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Figure 2: Role of Unionization Rate When Nonunion Workers Are Strong Bargainers 
Notes: The figure plots union and nonunion wages, the average wage, and unemployment as a function of 
union coverage α. The nonunion bargaining power is set to γ = 0.8.

While intermediate coverage levels come with increased unemployment, determining which
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of the two extremes is better than the other depends on the bargaining power of nonunion
workers in their private wage bargains. To illustrate, first consider a case in which nonunion
workers are strong bargainers, setting γ = 0.8. Figure 2 plots the steady-state levels of
wages and unemployment in this case. The panel on the left first shows how union and
nonunion wages vary with union coverage. As union coverage falls, union wages rise until
they equal productivity and cannot rise further.25 In the meantime, the wages of nonunion
workers remain mostly unaffected, although they reflect changes in the outside options of
these workers, which are worse at intermediate levels of coverage. What enters into firms’
profits is the weighted average of these wages across the pool of unemployed shown in the
middle panel. Averaging across workers yields a hump-shaped relationship between union
coverage and the average wage, which further gives rise to the hump-shaped relationship
between union coverage and unemployment shown on the right.

Note that unemployment well exceeds the efficient level of 5 percent here even without the
union because of the high private bargaining power of workers, and that introducing the
union can actually improve outcomes over that alternative, if the coverage is high enough.
We could also ask what level of union coverage would be expected to emerge if workers could
choose (in the beginning of time) whether to be union or nonunion. In Figure 2, an interior
union coverage level exists where workers would be indifferent between being union versus
nonunion in terms of the wages being equal. At that coverage level, unemployment is lower
than it would be if unions were outlawed completely but higher than with universal coverage
of union wages.
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Figure 3: Role of Unionization Rate
Notes: The figure plots union and nonunion wages, the average wage, and unemployment as a function of 
union coverage α. The nonunion bargaining power is set to γ = 0.6.

To see how the picture changes when workers are weaker bargainers, Figure 3 looks at the case
in which the worker’s bargaining power yields efficient outcomes (here γ = 0.6). The figure
is qualitatively similar, but in this case, unemployment is always higher in the unionized
labor market than it would be without the union. Union wages also always exceed nonunion
wages and by a clear margin. Given a choice, all workers would prefer to be in the union,

25Wages cannot rise further or the firms would be forced to shut down.
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but it would be welfare improving to outlaw the union instead.

4.5 Shock propagation

An important reason that macroeconomists have been interested in labor unions is the
notion that unions create rigidity in wages, affecting how the economy responds to shocks
(Taylor 1980, Blanchard and Fischer 1989). We now turn to illustrating the union impact
on shock propagation in our model in the context of full unionization.

We consider the effects of a one-time, unanticipated, permanent increase in labor productiv-
ity. We first solve for the steady state before the shock and then look at how the transition to
higher productivity plays out when the expected duration of wage contracts is two years.26

Figure 4 plots the responses, comparing the unionized labor market (solid line) with the
efficient (dashed line), as well as fully fixed wages (dotted line). In the efficient response,
the wage and market tightness adjust immediately to their new steady-state levels. With
fixed wages, the market tightness also adjusts immediately to its new steady-state level, al-
though in this case, larger than what is efficient. The union response lies between these two
extremes but also differs in exhibiting significant inertia because of the multiperiod union
contracting.27

In terms of the magnitudes of these responses, the efficient response reflects a sizable on-
impact response of the wage to the shock, which leads to small responses in quantities. This
is the unemployment volatility puzzle discussed by Shimer (2005): The magnitude of these
responses is an order of magnitude lower than what would be needed to be consistent with
business cycle fluctuations in the data. If wages are fixed in response to the shock, quantities
respond substantially more strongly, as highlighted by Hall (2005), allowing the model to
match the magnitude of fluctuations observed. The stickiness in union wages, with two-
year contracting, increases the volatility of quantities substantially relative to the efficient
responses.

Underlying the stickiness in wages because of multiperiod contracting, there is also an ad-
ditional mechanism generating endogenous real wage rigidity in the model: Wages rise with
some delay because the union distortion is weaker in the immediate aftermath of the shock
when initial matches are relatively low. Wages rise to their full post-shock values only as
matches accumulate to reflect the new, higher productivity. In Figure 4, the impact of this
endogenous rigidity is overwhelmed by that of the stickiness associated with multiperiod
contracting, however.

26Recall that, with full unionization, our solution approach holds Wt fixed in nonrecontracting periods.
The solution to system (23–27) gives us a steady-state function Θ(n), which can be used to solve for a
corresponding function W (n) = z/(1 − β(1 − δ)) − κ/q(Θ(n)), characterizing the value W will take when
the union recontracts. When the shock hits, we can use the old values of W,n together with the post-shock
function W (n) to solve for the evolution of wages.

27Taylor (1980) has highlighted the role of unions in generating persistence in aggregate dynamics because
of long-term contracts.
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Figure 4: Impulse Responses
Notes: The figure plots the responses of the present value of wages, market tightness, unemployment,
vacancies, employment, and output to a 1 percent unanticipated permanent increase in productivity. The
figure shows the response for the economy with full coverage of union wages with two-year contracts, the
efficient response, and the response with fully fixed wages. What is plotted are expected values in each
period after the increase in productivity, across possible realizations of the recontracting shock.

5 Conclusions

This paper highlights a hold-up problem that emerges when an egalitarian union sets wages
in a frictional labor market. After demonstrating the issue in a theoretical setting, we study
the severity of the hold-up problem quantitatively in an extended model with partial union-
ization and long-term union contracting. We show that it raises wages and unemployment
significantly above their efficient levels. The relationship between union coverage and un-
employment is hump-shaped in the model, with intermediate levels of coverage featuring
higher unemployment than either very low or very high coverage, and the bargaining power
of non-union workers playing a key role in determining which of the two extremes is closer
to efficient allocations. Long-term union contracts generate significant stickiness in the re-
sponse of wages to shocks. Finally, the theory implies a rationale for tenure premia in union
wages, as a means of avoiding the distortions associated with holdup.

The analysis is conducted in a stylized setting, to isolate key forces at play, but many exten-
sions would seem natural, such as incorporating market power/decreasing returns, physical
capital, worker heterogeneity, an insider-outsider wedge, as well as thinking more about the
decisions of workers to join versus leave the union in a dynamic setting.
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Appendix

A Proofs

Proof of relationship between union and planner objectives. For the benchmark
model with egalitarian wages, we need to show that

∞∑

t=0

βt
(
nt + ht

)
wt =

∞∑

t=0

βt[
(
nt + ht

)
z − θt(1− nt)κ]−

n0κ

q(θ0)
, (28)

where ht stands for newly hired workers, i.e., ht = µ(θt)(1− nt).

First, note that the law of motion for employment implies that nt = (1− δ)tn0 +
∑t−1

k=0(1−
δ)t−khk, so we can write nt + ht = (1 − δ)tn0 +

∑t

k=0(1 − δ)t−khk. Using this identity, the
left-hand side of equation (28) can then be written as

∞∑

t=0

βt
(
nt + ht

)
wt = n0

∞∑

t=0

βt(1− δ)twt +

∞∑

t=0

βt

t∑

k=0

(1− δ)t−khkwt. (29)

The first term on the right-hand side of equation (29) can be written, using the zero-profit
condition, as

− n0κ

q(θ0)
+ n0

∞∑

t=0

βt(1− δ)tz.

The second term can be written, rearranging and using the zero-profit condition, as

∞∑

t=0

βt

t∑

k=0

(1− δ)t−khkwt =
∞∑

k=0

βkhk

∞∑

t=k

βt−k(1− δ)t−kwt

= −
∞∑

k=0

βkhk

κ

q(θk)
+

∞∑

k=0

βkhk

∞∑

t=k

βt−k(1− δ)t−kz

= −
∞∑

t=0

βtht

κ

q(θt)
+

∞∑

t=0

βt

t∑

k=0

(1− δ)t−khkz.

These two terms combine into

∞∑

t=0

βt[(nt + ht)z − θt(1− nt)κ]−
n0κ

q(θ0)
,

i.e., the right-hand side of equation (28). To see this, note that ht/q(θt) = θt(1− nt), and

n0

∞∑

t=0

βt(1− δ)tz +

∞∑

t=0

βt

t∑

k=0

(1− δ)t−khkz =

∞∑

t=0

βt(nt + ht)z.
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With partial unionization, the zero-profit condition changes, affecting this derivation. The
zero-profit condition now implies that the present value of wages Wt satisfies

Wt =

∞∑

k=0

βk(1− δ)kz − κ

αq(θt)
+

1− α

α
(1− γ)St.

Using this new zero-profit condition, the first and second terms on the right of equation (29)
can be written, respectively, as

− n0κ

αq(θ0)
+ n0

∞∑

t=0

βt(1− δ)tz + n0
1− α

α
(1− γ)S0,

and

−
∞∑

t=0

βtht

κ

αq(θt)
+

∞∑

t=0

βt

t∑

k=0

(1− δ)t−khkz +
1− α

α
(1− γ)

∞∑

t=0

βthtSt.

These terms now combine into
∞∑

t=0

βt[(nt + ht)z − θt(1− nt)
κ

α
+

1− α

α
(1− γ)htSt]−

n0κ

αq(θ0)
+

1− α

α
(1− γ)n0S0.

�

Proof of Proposition 1. The union objective can be written in terms of the planner’s
value function, as in equation (10). The planner problem is standard, and known to have a
linear solution V (n), with the planner’s choice of θ constant, independent of n. The union
objective differs in the initial period by the −n0κ/q(θ0) term, however, which implies that
the initial θ0 is below the planner’s choice, and this difference is greater the greater is n0.�

Proof of Proposition 2. Consider a steady state of the unionized economy, where Θ′(n) =
−c for some c > 0. Using this fact, steady-state employment can be written as n = (1 −
δ)µ(θ)/(1 − (1 − δ)(1 − µ(θ))), equation (16) implies that the steady-state θ satisfies the
equation

1 = µ′(θ)
z − b

κ
+ β(1− δ)

(
1− µ(θ) + θµ′(θ)

)
−∆(θ), (30)

where ∆(θ) ≡ 0 in the efficient outcome, and

∆(θ) ≡ −1− δ

δ
µ(θ)

q′(θ)

q(θ)2
[1− β(1− δ)(1− µ(θ)− µ′(θ)δc

1− (1− δ)(1− µ(θ))
)]

in the unionized economy. The term ∆(θ) thus captures the union distortion. Under effi-
ciency, the right-hand side of equation (30) is strictly decreasing in θ pinning down a unique
steady-state θ (as long as µ′(0) z−b

κ
+ β(1 − δ) > 1).28 Because the union distortion ∆(θ) is

strictly positive for any θ > 0, the unionized economy must have lower steady-state θ. �

Proof of Proposition 3. Similarly to Proposition 1, this result follows from writing the
union problem in terms of the planner’s value function, as in the text. �

28Note that mu(v, u) = µ(θ)− µ′(θ)θ, an expression which is reasonable to assume to be increasing in θ.
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B Bellman equations for extended model

The Bellman equations for the nonunion workers in the extended model can be written as
follows: For the value of unemployment and employment, we have

Ut = µ(θt)Et + (1− µ(θt))(b+ βUt+1),

Et = wt + βδUt+1 + β(1− δ)Et+1,

where Ut is the value of an unemployed worker, Et the value of an employed worker, and wt

the wage of a nonunion worker. Recall that the union status of a worker is fixed over time.

For the value of a job filled with a nonunion worker, we have

Jt = z − wt + β(1− δ)Jt+1.

Defining the match surplus as St ≡ Et + Jt − b− βUt+1, and requiring that the private wage
bargains divide the surplus according to Jt = (1−γ)St, and Et− b−βUt+1 = γSt, the match
surplus can be shown to satisfy equation (20) in the text.

C Numerical approach

As discussed in Section 4.2, we adopt the solution method outlined in Krusell, Kuruscu, and
Smith (2002) for the generalized Euler equation. Given the complexity of the system (23–
27), we begin by describing the approach in the context of equation (16), before proceeding
to the extended model.

The generalized Euler equation (16) is a functional equation in Θ(n), defined over a range
of values of n encompassing the steady state. The idea is to calculate a Taylor polynomial
approximating Θ(n) around its steady state. Calculating a kth order polynomial involves
first analytically differentiating the Euler equation k times with respect to n, acknowledging
that Θ(n) and N(n,Θ(n)) are functions of n. We then evaluate the resulting system of
k + 1 equations in steady state, setting Θ and its derivatives to their steady-state values
θ, θ′, ..., θk+1, as well as replacing n with its steady-state value µ(θ)(1− δ)/(δ+ µ(θ)(1− δ)).
This yields a system of k + 1 equations in the unknowns θ, θ′, ..., θk+1. We then set θk+1 to
zero, to arrive at a system of k + 1 equations in k + 1 unknowns—the coefficients of the
polynomial approximating Θ(n).

We implement this approach in two stages. The first stage involves using an analytical
solver, such as Mathematica, to calculate the analytical derivatives and to perform the
substitutions needed to arrive at the system of equations in θ, θ′, ..., θk. The second stage
involves using a numerical solver, such as Matlab, to solve this nonlinear system of equations.
Solving the system can, in practice, require a good initial guess, so we approach the problem
iteratively. We start with a 0th order Taylor polynomial and proceed to successively higher-
order polynomials using the results from the previous step as initial guesses, looking for
convergence in the coefficients of the polynomial as we proceed.

Turning to the extended model, then, we apply the same approach directly to the system (23–
27). Instead of taking derivatives of a Euler equation, we take derivatives of the first order
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condition of the union objective in equation (25). These derivatives will involve the values
and derivatives of the functions V f(n, θ), V r(n), Sf(n, θ), Sr(n) as well, since they were not
eliminated from the first-order condition in deriving a Euler equation. We therefore need
to calculate these values and derivatives in a separate step, to incorporate them into the
equations.

Again, we implement the solution approach in two stages. In the analytical derivation stage,
we tackle the system (23–27) starting from the surplus equations (23–24), then the value
equations (26–27), and finally the first order condition for equation (25).

Beginning with the system (23–24): To solve for the steady-state levels of surpluses Sf(n, θ), Sr(n),
we simply solve the system analytically, expressing the steady-state levels of Sf(n, θ), Sr(n)
as functions of steady-state θ. To solve for first derivatives of Sf(n, θ), Sr(n), we differentiate
the system (23–24) with respect to (n, θ) (acknowledging that the recontracting tightness
Θ(n) andN(n,Θ(n)) are functions of n), evaluate the resulting equations at steady state, and
solve the resulting system for steady-state values of the derivatives Sf

n(n, θ), S
f
θ (n, θ), S

r
n(n)

as functions of the steady-state values and derivatives of Θ(n) and values of Sf(n, θ), Sr(n).
To solve for higher order derivatives of Sf (θ, n), Sr(n), proceed along the same lines. The
equations allow analytical solutions in each step.

We then turn to system (26–27), and proceed with the same approach to arrive at expressions
for the steady-state values and derivatives of V f(n, θ), V r(n) as functions of the steady-state
values and derivatives of Θ(n), values and (lower order) derivatives of V f (n, θ), V r(n), as
well as values and derivatives of Sf(n, θ), Sr(n). Again, these equations allow analytical
solutions in each step.

Finally, we turn to the first-order condition for equation (25), proceeding to differentiate the
equation k times, and evaluate the resulting equations in steady state. This yields k + 1
equations in the steady-state value and derivatives of Θ(n), which depend also on those of
Sf(n, θ), V f (n, θ), V r(n). To eliminate the latter from the equations, we use the expressions
derived above. This yields k + 1 equations representing the 0th − kth derivatives of the first
order condition for equation (25) in the unknowns θ, θ′, ..., θk+1. We then set θk+1 to zero, to
arrive at a system of k + 1 equations in k + 1 unknowns—the coefficients of the polynomial
approximating Θ(n).

In the numerical stage, we solve this nonlinear system of equations. In practice, solving the
system can require a good initial guess, so we approach the problem iteratively. We start
with a zero-order Taylor polynomial and proceed to successively higher-order polynomials
using the results from the previous step as initial guesses, looking for convergence in the
coefficients of the polynomial as we proceed.
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