Stephen A. Meyer

The Link Between Savings & Interest Rates: A Key Element in the Tax Policy Debate
Robert H. DeFina

Stephen A. Meyer

The remarkable strength of investment spending during the present expansion reflects, in part, the incentives to invest embodied in the 1981 and 1982 tax acts. One way to assess the impact of these incentives is to analyze how the changes in the tax code lowered firms' net cost-of-capital. Using this measure, it appears that, although the 1982 tax act offset some of the incentives of the 1981 tax act, their combined effect was to make several kinds of investment projects much more attractive, because of revised depreciation and investment tax credit rules.

THE LINK BETWEEN SAVINGS & INTEREST RATES: A Key Element in the Tax Policy Debate

Robert H. DeFina

An important goal of tax policy reform is to enhance people's incentives to save. But surveying the literature in economic research for a way to achieve this goal reveals few clear guidelines. The theories explaining the response of saving to changes in the rate of return suggest opposing effects; and the empirical tests of the saving response are just as ambiguous. Until further research clarifies this issue, policymakers should probably proceed with caution in reforming taxes to encourage saving.
Tax Policy Effects on Investment:
The 1981 and 1982 Tax Acts

Stephen A. Meyer

Investment spending by businesses has grown with unusual vigor during the current economic expansion. During the first year-and-one-half of the current expansion, business fixed investment grew at a 17 percent annual rate, almost twice as fast as its average growth during the equivalent period in the six previous recoveries. Yet market interest rates have been high during the past three years, compared to historical experience: high interest rates tend to reduce investment, other factors being equal, by making it more costly for firms to finance investment. Why has investment spending been so strong?

Part of the answer is that changes in business tax laws enacted in 1981 and 1982 increase businesses' incentives to invest, on balance. The net effect of these changes is to lower, on average, the tax-adjusted real financing costs that firms face at any given interest rate. Thus the changes in tax law modify the historical relationship between investment behavior and interest rates by making it more attractive to invest at any given interest rate.

*Stephen A. Meyer is a Senior Economist and Research Advisor in the Research Department of the Federal Reserve Bank of Philadelphia. He also teaches macroeconomics and international finance at the Wharton School, University of Pennsylvania.
One of the objectives of the 1981 tax act was to spur investment spending. The 1981 tax act did substantially increase incentives to invest in virtually all kinds of buildings and equipment. The 1982 tax act, however, took back much of the increase. The net effect of the two tax acts is to reduce incentives to invest in certain kinds of projects, while making other projects somewhat more attractive by reducing tax-adjusted real financing costs.

Of course, financing costs—even tax-adjusted real financing costs—are not the only factors affecting firms' investment decisions. Expected future profits from a new investment and the actual cost of the investment also will affect firms' decisions. But the cost of financing investment projects is one important element helping to determine how much investment firms will undertake.

In addition to increasing businesses' incentives to invest, on average, the 1981 and 1982 tax acts also change the relative attractiveness of various kinds of real investment. Even though such changes may be unintentional effects of the new tax laws, the 1981 and 1982 tax acts do help to explain changes in the composition of business investment, as well as its strength, during the current economic recovery.1

THE COST-OF-CAPITAL APPROACH

Businesses have undertaken more investment during the past three years than we would have expected on the basis of historical experience, given how high not only market interest rates have been, but also how high real interest rates have been. To get real interest rates, subtract expected inflation from market interest rates.2 The inflation premium included in market interest rates should not be counted as part of firms' real financing costs, because firms can expect that inflation premium to be offset by rising prices for the goods they produce, on average.

The real interest rate alone does not give us the actual cost of financing an investment project. To get firms' actual financing costs we must also adjust for the effects of tax laws. Adjusting for inflation and also for the effects of tax laws, gets us to the net cost-of-capital, which we can think of as the tax-adjusted real interest rate faced by a firm which borrows to finance an investment project.

An investment project is worthwhile only if the expected rate of return (net of actual depreciation) from the investment is at least as large as the cost (expressed as a rate) of financing the project. Because interest payments are a deductible expense in calculating taxable profits, and because the firm can benefit from investment tax credits, depreciation allowances, and other provisions of the tax code, the net cost-of-capital for financing the investment project differs from both market and real interest rates. One way of evaluating investment projects is to compare the expected rate of return (net of actual depreciation) on each project, before taxes, with the net cost-of-capital for borrowed funds. If the expected rate of return from an investment project is sufficiently larger than the net cost of capital for financing the project to compensate for the risk inherent in undertaking the project, then a firm will want to undertake that investment. A reduction in the net cost-of-capital increases the number of investment projects for which expected return is greater than financing cost, so a cut in the net cost-of-capital provides firms with an incentive to invest more.

The Tax Code and the Cost-of-Capital. The net cost-of-capital is affected by three major parts of the tax code. The ability to deduct interest payments as a business expense in calculating taxable income is one. Consider as an example a corporation that borrows money to finance some investment project. Each time the corporation pays out a dollar of interest on that loan, it also reduces its taxable income by one dollar. Because the statutory federal corporate income tax rate is 46 percent, our corporation saves 46 cents in federal corporate income tax when it reduces its taxable income by paying out one dollar of interest. In terms of cash flow, our corporation must pay out 54 cents, net, rather than one dollar.

1The 1981 and 1982 tax acts also changed personal income taxes. For a discussion of the economic effects of the personal tax changes, see S. A. Meyer, "Tax Cuts: Reality or Illusion?" this Business Review (July-August 1983).

to meet its interest obligation. So the ability to deduct interest payments reduces the net cost-of-capital relative to market interest rates.

The ability to deduct allowable depreciation (as defined in the tax code) as a business expense is a second part of the tax code that affects the net cost-of-capital. When a firm undertakes some new investment, such as buying and installing a new machine, it also incurs some real costs of depreciation—the new machine must be maintained and eventually it will wear out and need to be replaced. The tax code recognizes that depreciation is a real cost of doing business; the tax code allows firms to subtract a depreciation allowance from gross profits to calculate their taxable income. But the depreciation allowances specified by the tax code rarely equal the actual depreciation costs incurred by a firm on its new machines. If the depreciation allowances written into the tax code are larger than actual depreciation incurred by the firm, then the tax code permits the firm to report taxable profits smaller than its actual profits (net of true depreciation) and thereby increases the net cash flows from investment in new machines by reducing cash outlays for tax payments.

To see exactly how much the depreciation allowances specified by the tax code differ from actual depreciation costs over the lifetime of a new investment project, the firm can look at the net-present-value (NPV) of depreciation allowances and costs. (NPV is the value today of future receipts or payments. One way to think of NPV is to ask: How much must I deposit in a bank today, earning today’s interest rate, in order to be able to make a specified series of future payments?) If the NPV of depreciation allowances specified by the tax code is larger than the NPV of actual depreciation costs over the lifetime of the investment project, then the tax code will reduce the net cost-of-capital. This is so because the extra depreciation allowances reduce the firm’s tax liability, which increases the net cash flows from the investment project by the amount that otherwise would have gone to pay taxes. The tax savings effectively reduce the real cost of borrowing to finance the project. On the other hand, if the NPV of depreciation allowances is smaller than the NPV of actual depreciation costs, then the tax code increases the net cost-of-capital for borrowing to invest in such a machine.

The opportunity to claim an investment tax credit is the third major part of the tax code that affects the net cost-of-capital. When a firm undertakes some kinds of new investment, the tax code allows it to claim an investment tax credit which immediately reduces the firm’s tax liability. So the firm can pay out less cash to the taxman. The reduction in cash outflows generated by the investment tax credit reduces the net cost-of-capital to the firm.

These three major aspects of the tax code—deductions for interest payments, depreciation allowances, and investment tax credits—combine with market interest rates and expected inflation to determine firms’ net cost-of-capital for new investment projects. (For technical details on the net cost-of-capital see the APPENDIX: CALCULATING THE NET COST-OF-CAPITAL., p. 12.) The interplay among all these factors typically makes the net cost-of-capital lower than the market interest rate at which a firm can borrow, but the net cost-of-capital may be higher or lower than the real interest rate (the market rate less the expected inflation rate).

Changes in the tax code can raise or lower the net cost-of-capital, even though market interest rates and expected inflation remain unchanged. Because the net cost-of-capital measures firms’ cost of borrowing to finance an investment project, changes in the tax code can make investment less or more attractive even with no change in interest rates. In other words, changes in the tax code, especially in the three major aspects of the tax code that we identified earlier, can change the relationship between observed, market interest rates and investment spending.

HOW DID THE 1981 AND 1982 TAX ACTS CHANGE THE COST-OF-CAPITAL?

The 1981 tax act, formally called the Economic Recovery Tax Act of 1981, liberalized two of the

3 The tax code bases depreciation allowances on the initial, or historical, cost of investment projects. Actual depreciation costs depend on the replacement, or current, cost of comparable machines. So in an economy which is experiencing inflation, it is likely that the NPV of depreciation allowances will be smaller than the NPV of actual depreciation costs, which raises the net cost-of-capital. And the higher the inflation rate, the larger will be the amount by which depreciation allowances understate actual depreciation costs.
three major aspects of the tax code that affect the cost-of-capital—allowable depreciation and investment tax credits. The 1981 tax act shortened the period over which assets can be depreciated, which substantially increased depreciation allowances for the early years of useful life of most types of investment, and thus raised the NPV of tax depreciation allowances. The new depreciation rules let firms which undertake new investment pay less tax than they would have before 1981, at least in the first few years after undertaking the investment. Even though firms may eventually have to pay those taxes, postponing the tax payments is equivalent to obtaining an interest-free loan and thus improves firms' cash flow. Because the new depreciation rules reduce the cash outlays associated with new investment, they reduce the net cost-of-capital.

The 1981 tax act also liberalized the investment tax credit for purchasing new short-lived capital equipment, that with a useful life of less than seven years (under 1980 tax law). Increasing the investment tax credit reduces the net cost-of-capital because it provides new tax savings that reduce the cash outlays required to undertake investments which qualify for the tax credit.

The 1982 tax act, officially named the Tax Equity and Fiscal Responsibility Act of 1982, continued the accelerated depreciation methods enacted in 1981; however, it introduced a new requirement that firms subtract one-half of the investment tax credit available on new investment projects from the cost of such projects, and then calculate allowable depreciation deductions on the remainder. (So a firm would calculate depreciation allowances using 95 percent of the cost of a project which qualifies for a 10 percent investment tax credit, for example.) This new requirement reduces the NPV of depreciation allowances, compared to 1981. So this new requirement raises the net cost-of-capital, compared to 1981 tax law. Neither the 1981 nor 1982 tax acts changed the provisions of the tax code which specify that interest payments are a tax-deductible business expense.

HOW MUCH WAS THE NET COST-OF-CAPITAL CHANGED?

Exactly how much the 1981 and 1982 tax acts changed the cost-of-capital for a particular investment project depends upon the kind of investment being undertaken, and also upon the level of interest rates and expected inflation. But the changes in net cost-of-capital for most kinds of investment within a few broad categories that encompass all kinds of investment are quite similar, even though the effects of tax changes differ across those categories.

Let us take a coupon interest rate of 13.5 percent and an expected inflation rate of 5 percent as representative of the situation that a firm faces today if it wants to borrow to finance an investment project. Using those rates, one can calculate the net cost-of-capital under 1980 tax law, and under current tax law, as described in the Appendix.

Taking a weighted average of the change in net cost-of-capital for all the different kinds of investment undertaken in the U.S. economy shows that the net effect of the 1981 and 1982 tax acts was to reduce the average net cost-of-capital by slightly more than one-eighth, from 2.64 percent to 2.29 percent. For other combinations of market interest rates and expected inflation, the reductions in net cost-of-capital may be larger or smaller. But for all combinations of market interest rates between 10 and 16 percent and expected inflation between 4 and 8 percent, the net effect of the 1981 and 1982 tax acts was to

5 In principle, one should choose for each investment an interest rate that measures the cost of borrowing over the lifetime of the project. Thus one normally would use a higher interest rate to calculate the net cost-of-capital for a long-lived project than for a short-lived project. Because market interest rates are now essentially equal for all maturities of three years or more, I have simplified the argument by using one interest rate for all types of investment.

6 The weights used in calculating this average net cost-of-capital are the shares of each kind of investment (as a fraction of total fixed investment) in the U.S. in 1982. Weights are calculated from data in the July 1985 issue of the Survey of Current Business (U.S. Department of Commerce).
reduce the average net cost-of-capital by at least one-tenth.\(^7\)

Breaking down investment into the broad categories used by the U.S. Department of Commerce for the National Income and Product Accounts reveals the degree to which "the 1981 tax law giveth and the 1982 tax law taketh away" (see Table 1). For the two categories covering most construction, the 1981 tax act cut the net cost-of-capital and the 1982 tax act left those cuts virtually untouched. The 1981 tax act cut the net cost-of-capital for building new plant (such as factories and commercial buildings) by about one quarter. The cut in the net cost-of-capital results from the larger NPV of depreciation allowances generated by the new accelerated depreciation methods introduced in the 1981 tax act.\(^8\) The 1982 tax act did not change the tax treatment of buildings further. The 1981 tax act also cut the net cost-of-capital associated with borrowing to finance residential construction, such as construction of new apartment buildings. The change in depreciation rules for rental housing cut the net cost-of-capital for this kind of investment by roughly one-sixth.

While most kinds of construction activity benefited from large cuts in net cost-of-capital, the tax-adjusted real cost of borrowing to finance investment in the kinds of structures built by utilities did not benefit much from the 1981 and 1982 tax acts, on balance. The net cost-of-capital for this type of investment was barely cut.

Investment in equipment benefited from the largest cut in net cost-of-capital under the 1981 tax act, but that cut was largely reversed by the 1982 tax act, on average. The effect of the accelerated depreciation rules and liberalized investment tax credits introduced by the 1981 tax act was to reduce the net cost of capital for investment in equipment by nearly one-half, on average. But the 1982 tax act raised the net cost-of-capital by allowing firms to depreciate less than the full cost of a project that qualifies for an investment tax credit. The net effect of the 1981 and 1982 tax acts was to reduce the net cost-of-

\(^7\)For combinations of market interest rates and expected inflation rates which imply a before-tax real interest rate less than 5 percent, the net cost-of-capital becomes negative, on average, under current tax law. The net effect of the 1981 and 1982 tax acts is still to reduce the net cost-of-capital, on average.

\(^8\)The 1981 tax act also cut the cost of capital for rehabilitating existing factories and commercial buildings by substantially increasing an investment tax credit (from 10 percent to as much as 25 percent) for rehabilitation expenditures on buildings more than 30 years old. The provisions of the tax code which apply to such projects are so complicated, however, that it is not possible to calculate the change in net cost-of-capital for rehabilitation of existing buildings except on a project-by-project basis. But the net cost-of-capital for financing the rehabilitation portion of such a project (but not the purchase of the old building and its site) was cut by roughly 35 percent, given the rates used in our example.

TABLE 1

NET COST-OF-CAPITAL (%)

<table>
<thead>
<tr>
<th>Category</th>
<th>1980</th>
<th>1981</th>
<th>1982</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buildings</td>
<td>4.58</td>
<td>3.36</td>
<td>3.36</td>
</tr>
<tr>
<td>Residential Structures</td>
<td>3.59</td>
<td>2.97</td>
<td>2.97</td>
</tr>
<tr>
<td>Utilities and Structures</td>
<td>2.92</td>
<td>2.77</td>
<td>2.83</td>
</tr>
<tr>
<td>Equipment</td>
<td>1.55</td>
<td>0.84</td>
<td>1.49</td>
</tr>
</tbody>
</table>

Notes:

1. The figures in this table were calculated using a coupon interest rate of 13.5 percent and an expected inflation rate of 5 percent, roughly corresponding to market conditions in mid-1984.

2. The disaggregation shown here corresponds to that given by the U.S. Department of Commerce when it presents detailed National Income and Product Accounts data for the United States in the July Issue of Survey of Current Business each year.
capital associated with borrowing to finance investment in equipment by one-twentieth from its 1980 level.

A tax-induced reduction in the net cost-of-capital makes it less costly for firms to undertake new investment, at any given interest rate. It follows that the business tax changes enacted in the 1981 and 1982 tax acts are part of the reason why investment spending has been strong even though interest rates seem high by historical standards. Firms have discovered that the real, after-tax, cost of borrowing to finance new investment is much lower than market interest rates, and lower than would have been the case if the tax laws had not been changed since 1980.

DIFFERENTIAL EFFECTS OF THE 1981 AND '82 TAX CHANGES

Looking at the average change in net cost-of-capital due to the 1981 and 1982 tax acts does not tell us all that we would like to know, however. We have already seen that the reduction in net cost-of-capital was larger on average for investment in plant than for investment in equipment. The differences in the tax laws' effect upon the net cost-of-capital for some specific kinds of investment is even larger. (For complete details see: NET COST-OF-CAPITAL FOR 35 TYPES OF INVESTMENT PROJECTS.) The two tax acts reduced the net cost-of-capital for some kinds of investment by much more than the average, not at all for some other kinds of investment, and raised the net cost-of-capital for some types. These differences are important because they can affect the composition of new investment in the U.S. economy.

Some Investments Benefited Greatly. The net cost-of-capital associated with borrowing to finance the purchase of automobiles for business use was cut by the largest amount. Suppose we continue with our example of a firm which borrows at a coupon interest rate equal to 13.5 percent, and which expects 5 percent inflation each year over the useful life of its investments. Following the steps laid out in the Appendix, such a firm would find that the 1981 and 1982 tax acts reduced the net cost-of-capital for investing in new automobiles by almost one-third on balance. This reduction is more than twice as large as the average cut in the net cost-of-capital; recall that the average net cost-of-capital, averaging over all kinds of investment, was cut by slightly more than one-eighth. The large reduction in net cost-of-capital for automobiles stems from changes in the investment tax credit (ITC). For automobiles used in business, the ITC is now 6 percent of the value of the investment, almost twice the 3.3 percent credit allowed under 1980 tax law.

For ships and boats used in business, the reduction in net cost-of-capital was almost as large, and still substantially larger than the average cut for all investment. The net cost-of-capital associated with borrowing to finance purchases of ships and boats for business use was cut by more than one-quarter. The net cost-of-capital for financing purchases of engines and turbines was also cut substantially more than the average. For this kind of machinery the net cost-of-capital was cut by one-quarter, on balance, by the 1981 and 1982 tax acts (still assuming that the firm borrows at a 13.5 percent market rate and expects continuing 5 percent inflation).

The large reductions in net cost-of-capital for financing purchases of ships and boats, and of engines and turbines, stem from the new accelerated depreciation rules enacted in 1981. The time period over which these investments can be depreciated was shortened so substantially that the NPV of depreciation allowances is higher under current tax law than under 1980 tax law, even though the firm cannot now depreciate the full cost of such investments.

Finally, investments in new buildings, especially commercial buildings, benefited from large reductions in the net cost-of-capital. The new depreciation rules included in the 1981 tax act reduced the net cost-of-capital for this type of building by three-tenths. Industrial buildings benefited almost as much: the net cost-of-capital for financing construction of such buildings was cut by one-fifth. The 1982 tax act did not change the net cost-of-capital for buildings further.

Utilities' Structures Benefited Much Less. While some kinds of investments benefited from larger than average reductions in net cost-of-capital, the tax-adjusted real cost of borrowing to finance investment in the kinds of structures built by utilities did not benefit much, if at all, from the 1981 and 1982 tax acts. The net cost-of-capital for financing investment in telephone and telegraph
NET COST-OF-CAPITAL
FOR 35 TYPES OF INVESTMENT PROJECTS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Automobiles</td>
<td>2.04</td>
<td>0.62</td>
<td>1.44</td>
</tr>
<tr>
<td>Commercial Buildings</td>
<td>4.58</td>
<td>3.24</td>
<td>3.24</td>
</tr>
<tr>
<td>Hospital Buildings</td>
<td>4.47</td>
<td>3.19</td>
<td>3.19</td>
</tr>
<tr>
<td>Ships and Boats</td>
<td>2.41</td>
<td>1.39</td>
<td>1.74</td>
</tr>
<tr>
<td>Religious Buildings</td>
<td>4.24</td>
<td>3.08</td>
<td>3.08</td>
</tr>
<tr>
<td>Educational Buildings</td>
<td>4.24</td>
<td>3.08</td>
<td>3.08</td>
</tr>
<tr>
<td>Engines and Turbines</td>
<td>2.30</td>
<td>1.36</td>
<td>1.72</td>
</tr>
<tr>
<td>Other Nonfarm Buildings</td>
<td>5.05</td>
<td>3.79</td>
<td>3.79</td>
</tr>
<tr>
<td>Industrial Buildings</td>
<td>4.54</td>
<td>3.54</td>
<td>3.54</td>
</tr>
<tr>
<td>Other Nonbuilding Facilities</td>
<td>4.18</td>
<td>3.55</td>
<td>3.55</td>
</tr>
<tr>
<td>Railroad Equipment</td>
<td>2.16</td>
<td>1.45</td>
<td>1.76</td>
</tr>
<tr>
<td>Residential Buildings</td>
<td>3.59</td>
<td>2.97</td>
<td>2.97</td>
</tr>
<tr>
<td>Metalworking Machinery</td>
<td>1.87</td>
<td>1.07</td>
<td>1.59</td>
</tr>
<tr>
<td>General Industrial Equipment</td>
<td>1.87</td>
<td>1.07</td>
<td>1.59</td>
</tr>
<tr>
<td>Electrical and Communications Equipment</td>
<td>1.87</td>
<td>1.10</td>
<td>1.61</td>
</tr>
<tr>
<td>Special Industry Machinery</td>
<td>1.89</td>
<td>1.20</td>
<td>1.65</td>
</tr>
<tr>
<td>Fabricated Metal Products</td>
<td>1.90</td>
<td>1.27</td>
<td>1.69</td>
</tr>
<tr>
<td>Trucks, Buses, and Trailers</td>
<td>1.34</td>
<td>0.20</td>
<td>1.20</td>
</tr>
<tr>
<td>Farm Structures</td>
<td>3.52</td>
<td>3.22</td>
<td>3.22</td>
</tr>
<tr>
<td>Gas Storage and Distribution Structures</td>
<td>2.51</td>
<td>2.14</td>
<td>2.30</td>
</tr>
<tr>
<td>Petroleum Pipelines</td>
<td>2.58</td>
<td>2.18</td>
<td>2.39</td>
</tr>
<tr>
<td>Tractors</td>
<td>1.56</td>
<td>0.80</td>
<td>1.47</td>
</tr>
<tr>
<td>Instruments</td>
<td>1.61</td>
<td>0.91</td>
<td>1.52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Little or No Change in Net Cost-of-Capital:</th>
<th>1980</th>
<th>1981</th>
<th>1982</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railroads</td>
<td>2.57</td>
<td>2.41</td>
<td>2.52</td>
</tr>
<tr>
<td>Telephone and Telegraph Structures</td>
<td>2.69</td>
<td>2.56</td>
<td>2.72</td>
</tr>
<tr>
<td>Electric Light and Power Structures</td>
<td>2.66</td>
<td>2.53</td>
<td>2.68</td>
</tr>
<tr>
<td>Mining, Shafts and Wells</td>
<td>3.01</td>
<td>2.92</td>
<td>2.92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Machinery</td>
<td>1.56</td>
<td>1.24</td>
<td>1.67</td>
</tr>
<tr>
<td>Furniture and Fixtures</td>
<td>1.51</td>
<td>1.15</td>
<td>1.63</td>
</tr>
<tr>
<td>Other Equipment</td>
<td>1.36</td>
<td>0.91</td>
<td>1.52</td>
</tr>
<tr>
<td>Mining and Oil Field Machinery</td>
<td>1.29</td>
<td>0.79</td>
<td>1.47</td>
</tr>
<tr>
<td>Service Industry Machinery</td>
<td>1.29</td>
<td>0.79</td>
<td>1.47</td>
</tr>
<tr>
<td>Construction Machinery</td>
<td>1.27</td>
<td>0.74</td>
<td>1.45</td>
</tr>
<tr>
<td>Aircraft</td>
<td>0.91</td>
<td>0.67</td>
<td>1.41</td>
</tr>
<tr>
<td>Office, Computing, and Calculating Machinery</td>
<td>0.43</td>
<td>0.07</td>
<td>1.15</td>
</tr>
</tbody>
</table>

NOTES: (1) The figures in this table were calculated using a coupon interest rate of 13.5 percent and an expected inflation rate of 5 percent, roughly corresponding to market conditions in mid-1984.

(2) The disaggregation shown here corresponds to that given by the U.S. Department of Commerce when it presents detailed National Income and Product Accounts data for the United States in the July issue of Survey of Current Business each year.
structures, and in electric light and power systems was left unchanged. The net cost-of-capital for financing investment in railroad structures, gas storage and distribution structures, and petroleum pipelines was cut by the new tax laws, but not appreciably. Compared to 1980 tax law, the 1981 and '82 tax acts cut the net cost-of-capital for such investments less than one-tenth, on balance.

The 1981 tax act shortened the number of years over which utilities are allowed to depreciate most of these investments. Doing so modestly reduced the net cost-of-capital for these investments. The investment tax credit offset enacted in 1982 reduced the size of depreciation allowances for many kinds of investment projects undertaken by utilities, and thus raised the net cost-of-capital. On balance, the net cost-of-capital for most investments undertaken by utilities was not changed appreciably by the new tax laws.

Some Investments Were Adversely Affected.

While the new accelerated depreciation schedules introduced in the 1981 tax act substantially reduced the net cost-of-capital for financing investments in all kinds of equipment, the 1982 tax act took back much of the cut. Indeed, the tax-adjusted real cost of financing purchases of some kinds of equipment was raised substantially, after 1982.

For office computing and calculating machinery (the category covering electronic computers, including personal computers), the net cost-of-capital was almost tripled by the new tax laws. The net cost-of-capital for such investments remains lower than for any other type, however.

The large increase in net cost-of-capital for office, computing, and calculating equipment results from the investment tax credit offset built into the 1982 tax act. The 1981 tax act shortens the period over which firms calculate depreciation allowances from 7 years to 4 1/2 years for office, computing, and calculating equipment. But the 1982 tax act, which prevents firms from depreciating the full cost of such equipment, more than reverses those gains.

A similar, although smaller, increase occurred in the net cost-of-capital for financing purchase of aircraft. The net effect of the 1981 and 1982 tax acts was to raise the net cost-of-capital by one-half. (Again, these results are based upon a market interest rate of 13.5 percent and 5 percent expected inflation.) The net cost-of-capital for financing investments in construction machinery, mining and oil field machinery, and service industry machinery also rose as a result of the combined tax changes, by roughly one-seventh. In all of these cases the new investment tax credit offset introduced in 1982 outweighs the depreciation rules introduced in 1981.

Did Tax Changes Affect the Composition of Investment? The fact that the 1981 and 1982 tax acts changed the net cost-of-capital for various kinds of investment by different amounts has implications for the composition of investment during the current economic recovery and expansion. Large cuts in the net cost-of-capital for financing investment in ships and boats, in engines and turbines, in automobiles, and in new commercial buildings, suggest that business firms would have an incentive to undertake larger purchases of those items. In fact, the net cost-of-capital for almost all kinds of buildings was cut substantially by the 1981 and 1982 tax acts. We might expect firms to respond to the reductions in net cost-of-capital by investing more in new buildings, in general. On the other hand, utilities might be reluctant to undertake new construction, because the kinds of structures that they use received almost no cut in the net cost-of-capital.

And the increases in net cost-of-capital for financing purchases of office, computing and calculating machinery, of aircraft, and of some other kinds of machinery suggest that firms will be less likely to undertake investment projects which require purchases of those types of equipment. The net effect of the 1981 and '82 tax acts was to make such investment projects relatively less attractive.

Did the composition of new investment undertaken by firms in the U.S. actually change in the way suggested by changes in the net cost-of-capital? In general, the answer is that changes in the composition of investment do seem to be related to the changes in net cost-of-capital that were generated by the 1981 and 1982 tax acts, but not very closely. Construction of new factories and commercial buildings has grown more rapidly than in previous expansion periods, as suggested by large cuts in the net cost-of-capital for financing such investments. Construction of new buildings and structures grew at a 7 percent
annual rate during the first six quarters of this expansion. That rate is about one quarter higher than the average growth rate during comparable periods in six previous recoveries. Utilities have undertaken very little investment during the current economic expansion, consistent with unchanged cost-of-capital for their investment.\(^9\)

On the other hand, new investment in equipment, including office equipment and computers, has grown especially strongly during the current economic expansion even though the net cost-of-capital for equipment was cut only slightly, on average. Business investment in equipment in general grew at nearly a 22 percent annual rate during the first year-and-a-half of the current economic expansion. That rate is twice as fast as the average growth rate of equipment investment during the same period in six previous expansions, and faster than during any other expansion since World War II.\(^10\)

The observation that tax-induced changes in the net cost-of-capital for financing investments do not fully explain the changing composition of business investment should not be surprising. Changes in expected future profits from investment projects, and in the actual cost of projects, as well as in tax-adjusted real financing costs, all influence firms’ investment decisions. Investment in high-technology equipment, such as computers, illustrates the point. Prices of computers have fallen so dramatically as the number of potential applications has risen, that computers are more attractive investments than they were in 1980. Even though the real, tax-adjusted cost of financing investment in computers was increased by changes in tax law, the expected rate of return from investing in computers has risen even more. While the changes in net cost-of-capital which resulted from the 1981 and 1982 tax acts are not

\(^9\)Sluggish investment by utilities reflects both slower growth of demand for energy, and increased construction costs for utilities’ structures. Construction of nuclear power generating stations has been particularly hard hit by these two factors. These factors reduce the expected return on new investment by utilities, and thus make investment less attractive even at a constant net cost-of-capital.

\(^10\)These observations about investment behavior are based on data published by the U.S. Department of Commerce in Survey of Current Business, July 1984 and earlier issues.

the only reason for the pattern of investment that has occurred in the current economic expansion, they have played a role in determining the composition as well as the strength of new investment.

SUMMARY AND CONCLUSIONS

The net effect of the 1981 and 1982 tax acts was to make new investment more attractive by reducing the net cost-of-capital compared to what it would be under 1980 tax law. The net cost-of-capital is a measure of the tax-adjusted real financing cost faced by a firm that borrows to finance an investment project. Furthermore, the 1981 and 1982 changes in business taxes cut the net cost-of-capital for some investment projects more than for others. So these tax acts also changed the relative attractiveness of various kinds of investment projects.

The 1981 tax act made two major changes in business taxes: it increased the net present value of depreciation allowances, as specified by the tax code, for most kinds of new investment; and it increased investment tax credits for some kinds of investment. Both of these changes generate tax savings which reduce the net cost-of-capital. The 1982 tax act introduced a new investment tax credit offset which reduced the net present value of depreciation allowances for many kinds of investment, especially for equipment. The net effect of the changes in business taxes that were enacted in 1981 and 1982 is to reduce the net cost-of-capital for firms which borrow to finance new investment by one-eighth, on average, from what it would be under prior tax law (using an example in which market interest rates are 13.5 percent and inflation is expected to be 5 percent per year over the useful life of the investment project).

Because the net cost-of-capital measures the financing cost (in real terms) faced by firms which borrow to finance an investment project, firms will undertake more investment if the net cost-of-capital is reduced than they would otherwise. By reducing the net cost-of-capital, the 1981 and 1982 tax acts made firms more willing to undertake new investment. And investment projects which benefit from the largest cuts in net cost-of-capital will appear especially attractive. The net cost-of-capital for financing construction of new buildings was cut substantially more than was the net
cost-of-capital for investing in new equipment. But within the equipment category, some types of equipment benefited from large cuts in net cost-of-capital, while other types faced large increases.

Investment has grown exceptionally strongly during the current economic recovery and expansion, considering how high interest rates have been. The strength of investment is explained, in part, by reductions in the net cost-of-capital which resulted from the 1981 and 1982 tax acts. The changes in the composition of investment spending that occurred during the first year-and-a-half of the current economic expansion do not appear to be closely tied to the changes in relative cost-of-capital that were generated by the two tax acts, however. These results indicate that while the business tax changes contained in the 1981 and 1982 tax acts did provide some stimulus to investment, they can explain only part of the unusually strong growth of investment spending during the current economic expansion.

APPENDIX

CALCULATING THE NET COST-OF-CAPITAL

A mathematical expression for the net cost-of-capital is derived from the condition that firms will seek to undertake investment projects as long as the price of the project (including installation and start-up costs) is not greater than the net present value of the after-tax cash flows generated by the project. That is, it will be profitable for a firm to undertake an investment project as long as:

\[q \leq \sum_{t=0}^{\infty} \frac{(1+\rho)(1-d)(1+\pi)^{c+\mu} qz_t}{(1+i(1-\rho))^t} + kq \]

where \(q \) is the price of the project today, \(\mu \) is the statutory corporate income tax rate, \(d \) is the actual depreciation rate for the type of investment goods used in this project, \(\pi \) is the expected future inflation rate, \(c \) is the value (at today’s prices) of the additional income (net of wages and input costs) that the firm will generate in each period by selling the new output produced by the project, \(i \) is the market interest rate at which the firm borrows to finance the project, \(z_t \) is the depreciation allowance specified by the tax code (per dollar invested) for this type of project for each period \(t \) from now into the future, \(k \) is the investment tax credit rate that applies to this project, and \(r \) rises from period to period to denote the passage of time. Strictly speaking, this expression applies for a firm which is profitable and which pays corporate income tax.

The right-hand-side of this expression is the net present value of the after-tax cash flows generated by this project. In the numerator, the net income generated by the project grows at the inflation rate, \(\pi \), but simultaneously declines at the actual rate of depreciation, \(d \), as the investment wears out or becomes obsolete over time. The firm gets to keep a fraction, \((1-\mu) \), of the additional profits; the rest is paid out as taxes. The term \(\mu qz_t \) is the tax saving in each period which comes from the depreciation allowances specified by the tax code. The denominator serves to discount future cash flows at the after-tax interest rate the firm pays on its debt. So the summation tells us how much future net cash flows are worth today, which is when the firm must pay for the investment. The remaining term on the right-hand-side, \(kq \), is the immediate tax saving from the investment tax credit.
For our purposes this expression will be more useful if we rearrange it to focus on the relationship between the real rate of return (net of actual depreciation) on the investment and the real net cost of capital, including tax factors. By rearranging equation (1), we can see that it will be profitable for a firm to undertake an investment project as long as the real rate of return (net of actual depreciation) is at least as large as the net cost-of-capital:

\[(c/q) - d \equiv \frac{(1 - \mu) z - k}{\sum_{t=0}^{\infty} \frac{d(1+\mu)^t}{(1+\mu)^t}} - d\]

where \[z = \sum_{t=0}^{\infty} \frac{d(1+\mu)^t}{(1+\mu)^t}\] is the net present value of the depreciation allowances (per dollar invested) specified by the tax code for each period of the project's life. The right-hand-side of equation (2) is the net cost-of-capital for borrowing at rate \(i\) to finance the investment project. It shows the tax-adjusted real cost of financing a particular investment project.

To compute the net cost-of-capital for various types of investment projects, it is convenient to make the simplifying assumption that cash flows occur continuously, rather than once per period. With this assumption, and some calculus, equation (2) simplifies to:

\[(c/q) - d \equiv \frac{d(1+\mu) - \pi + d}{(1+\mu)} - (1 - \mu) z - k - d\]

where \[z = \int_{0}^{\infty} \frac{d(1+\mu)^t}{(1+\mu)^t}\] is the discounted present value of the depreciation allowances specified by the tax code. The right-hand-side of equation (3) is the net cost-of-capital. In equation (3), \(\pi\) and \(d\) are interpreted as continuously compounded rates.

We can see from equation (3) that higher interest rates, \(i\), increase the net cost-of-capital (if other factors are unchanged). Higher expected inflation, \(\pi\), on the other hand, reduces the net cost-of-capital. A cut in the corporate income tax rate, \(\mu\), will reduce the net cost-of-capital, as will increases in either depreciation allowances, \(z\), or the investment tax credit rate, \(k\).

For the values of net cost-of-capital presented in this article, \(i\), \(\pi\), and \(\mu\) are kept the same for all types of investment. The interest rate, \(i\), is set at 13 percent (0.13). This is a continuous rate; it is equivalent to an annual market interest rate of 13.5 percent paid semiannually (as is the case for corporate bonds). The expected future inflation rate, \(\pi\), is set equal to 5 percent (0.05). The statutory corporate income tax rate, \(\mu\), is 46 percent (0.46) under current law; it was the same in 1968. These numerical values were chosen to be roughly representative of market conditions in mid-1968. Investment Tax Credit rates, \(k\), for various kinds of investment are specified in the 1961 tax act.

To calculate the net present value of depreciation allowances, \(z\), one must refer to the relevant sections of the tax code, or to a business tax guide. Prior to passage of the 1961 tax act, the tax code allowed firms to choose among various depreciation procedures for many kinds of investments. The calculations in this paper are based on the assumption that firms chose the most advantageous depreciation rule (i.e., the rule that minimized tax payments) in each year of each asset's lifetime. The depreciation allowances for each year are then discounted at the after-tax nominal interest rate, \(i + \delta\), to find the net present value of depreciation allowances. Since 1981, the tax code has specified the exact amount of depreciation that a firm may claim per dollar invested, for each general class of investment projects and in each year of a project's life.\(^a\)

An example may help to make this discussion clear. Consider the calculations required to arrive at the net cost-of-capital for trucks, buses, and trailers. We wish to evaluate the numerical value of the right-hand side of equation (3). Set \(i = 0.13, \alpha = 0.46, \) and \(\pi = 0.05 \); these are the values assumed in our examples. The actual depreciation rate, \(d \), for this type of equipment is \(d = 0.254 \), which means that the equipment loses one-fourth of its remaining value each passing year.

Under 1980 tax law the investment tax credit for this kind of equipment is 6.7 percent because the equipment’s useful life was set at five years, so \(\lambda = 0.067 \). The most advantageous depreciation rule under 1980 tax law (for this kind of equipment) is to use the double-declining-balance depreciation rule initially, with a switch to the sum-of-the-year’s-digits depreciation rule when the latter rule yields higher depreciation allowances for the remainder of the equipment’s useful life. Taking advantage of the half-year convention written into the tax code, which allows firms to treat all assets as if they were purchased on July 1 (halfway through the year), a firm would have used the double-declining-balance rule for one-and-one-half years, and then switched to the sum-of-the-year’s-digits rule for the remaining three-and-a-half years of the investment’s useful life. These depreciation rules yield depreciation allowances (per dollar invested) of \(z_1 = \$0.20 \) in the first half-year, \(z_2 = 0.32 \) in the first full taxable year, \(z_3 = \$0.21, z_4 = \$0.15, \) and \(z_5 = \$0.09 \) in each of the next three years, respectively, and \(z_6 = \$0.05 \) in the final half-year of the equipment’s useful life. With these values for depreciation allowances, the net present value of depreciation allowances, \(z \), turns out to be \(z = 0.884 \) (assuming that the firm pays taxes quarterly). Plugging all of these values into equation (3) yields the net cost-of-capital under 1980 tax law for trucks, buses, and trailers, at a continuous interest rate of \(i = 0.13 \) (13 percent) and an expected inflation rate of \(\pi = 0.05 \) (5 percent). The result is:

\[
\text{Net Cost-of-Capital} = \frac{0.13(1 \cdot 0.46) \cdot 0.05 + 0.254}{(1 \cdot 0.46)(1 \cdot 0.46 \times 0.884 \cdot 0.067) \cdot 0.254} = 0.134 \quad \text{or 1.34 percent}
\]

This is the net cost-of-capital for borrowing to finance investment in trucks, buses, and trailers. under 1980 tax law (given the assumed interest rate and expected inflation rate).

To calculate the net cost-of-capital for this same equipment under 1984 tax law, we need to update the numbers for the investment tax credit rate, \(\lambda \), and the present value of depreciation allowances, \(z \). The new tax laws adopted in 1981 and 1982 raised the investment tax credit rate for this kind of equipment to 10 percent, so \(\lambda = 0.1 \under 1984 \) tax law. And the new laws also accelerated the allowable depreciation write-offs, so \(z \) is higher. Under current tax law the firm must deduct 15 percent of the “basis” of this equipment in the first half-year, 22 percent in the first full year, and 21 percent in each of the next three years. (The “basis” is defined by current law as the purchase price of the equipment, less one-half of the applicable investment tax credit.) Under current law, \(z = 0.818 \) per dollar invested, for our example in which the before-tax (continuous) interest rate is 13 percent. The net cost-of-capital under current tax law is thus:

\[
\text{Net Cost-of-Capital} = \frac{0.13(1 \cdot 0.46) \cdot 0.05 + 0.254}{(1 \cdot 0.46)(1 \cdot 0.46 \times 0.818 \cdot 0.1) \cdot 0.254} = 0.120 \quad \text{or 1.2 percent}
\]

The net cost-of-capital is lower under current tax law than under 1980 tax law because the investment tax credit is increased, and because the new accelerated depreciation rules increase the net present value of depreciation write-offs allowed by the tax code.