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Abstract 

We develop a measure of climate transition risk for regional economies in the U.S., based 

on the mix of firms that produce emissions in each region. To quantify transition risks, we 

consider the introduction of an emissions tax levied on companies emitting greenhouse 

gases and estimate changes in the market values of industries due to a carbon tax using 

Merton’s (1974) model. We find that transition risks are highly concentrated in a few 

sectors and counties with heavy exposures to transition-sensitive sectors. The size and 

geographic concentration of the tax effects depend significantly on assumptions about the 

elasticity of demand for inputs in the production chain. When applying county-level 

estimates for transition risks to banks’ deposit footprint, we find mild to moderate transition 

risks for community banks as a whole, although transition risks are high for a few banks. 
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Transition Risks, Bank Exposure 
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I. Introduction 

Many central banks around the world, including the Federal Reserve System, have initiated efforts 

to evaluate climate change risks to the economy and the financial system, in particular, the risks 

to banks. Most of the literature has adopted the same basic typology of climate risks: (i) the 

physical risks associated with an erosion of collateral and asset values of financial institutions due 

to extreme weather events; (ii) the transition risks associated with a reassessment of asset values 

due to changes in mitigation policies, technologies, and public sentiment.  In this paper, we focus 

on the impact of transition risk. In particular, we introduce a quantitative approach to assess the 

transition risks of climate change (henceforth, “transition risks”) for firms and regional economies 

then evaluate how these regional effects might impact small banks in the United States.2 

We view our main contribution as providing a measure of regional transition risk in a production 

network setting. We model the effects of a permanent emissions tax levied on companies emitting 

greenhouse gases and link this measure of transition risk to small bank portfolios in the United 

States.3 This approach is consistent with other researchers who also adopt the implementation of 

carbon taxation in the climate stress testing literature (e.g., Allen et al., 2020, Grippa and Mann, 

2020, Reinders et al., forthcoming, Vermeulen et al., 2021). While we use an emissions tax as an 

example of government policies that could be implemented as a response to climate change, this 

approach can be applied to study other carbon mitigation policies that increase firms’ costs of 

production in proportion to their emissions. Furthermore, our input-output methodology could be 

used to examine other sources of transition risk, for example, changing demand or technological 

changes. 

We consider two carbon tax rates: $40 and $100 per metric ton of greenhouse gas emissions 

measured in carbon dioxide equivalent (CO2 equivalent) units. Our choice of a $40 tax rate is based 

on recent carbon tax proposals, from which we take a midpoint across tax rates.4 The $100 tax rate 

addresses the possibility of a more aggressive climate policy, driven by a major shift in 

 
2 Our approach draws heavily on Reinders et al. (forthcoming), who conduct a transition risk stress test for large 
Dutch banks.  
3 We use the terms “carbon tax” and “emissions tax” interchangeably. 
4 See “What You Need to Know About a Federal Carbon Tax in the United States” by the School of International 
and Public Affairs at Columbia University. 
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policymakers’ concerns about climate change. Our rates are broadly in line with the climate stress 

testing literature and the broader literature analyzing transition risk and its effect on the economy.5 

The level of emissions is a key input for our measure of transition risks as they capture the exposure 

of firm profits and firm value to the carbon tax. We measure both direct and embodied emissions. 

Direct emissions refer to those emissions produced through a firm’s production activities. 

Embodied emissions take account of the production structure of the economy. Consider an 

economy with two sectors, A and B. Sector A produces one-third of its goods for consumers, and 

two-thirds of its goods are used as inputs by sector B. Sector B produces all its goods for 

consumers. Assume sector A’s direct emissions are 100 tons CO2 equivalent and sector B’s direct 

emissions are 100 tons CO2 equivalent. Sector A’s embodied emissions are 33 1/3 tons, while B’s 

embodied emissions are 100 + 66 2/3 tons.6 

While both measures of emissions may be of interest for several reasons, in our current exercise 

we use them to examine two polar assumptions about the incidence of the tax. Assume that the 

carbon tax is levied on the emissions at the point of production, and final goods producers face 

perfectly elastic demand from consumers.7 In one polar case, the no-pass-through case, we assume 

that input demand is perfectly elastic, so the profits of the final goods producers fall one-for-one 

with the tax. In this case, there are no price effects along the production chain and the effect of the 

tax can be measured using direct emissions alone. In contrast, if we assume that input demand is 

perfectly inelastic, the full-pass-through case, we must take account of the price effects of the tax 

on each firm’s inputs. For this exercise, we need to take account of the emissions embodied in 

these inputs. We discuss these polar cases below, but to avoid confusion: The two polar cases do 

not refer to different types of taxes. In both cases, we assume that firms are taxed on the emissions 

they generate in production; the polar cases reflect different assumptions about the incidence of 

the tax, driven by different assumptions about the input elasticity of demand. 

 
5 See, for example, Jung, Engle, and Berner (2023) and Conte, Desmet, and Rossi-Hansberg (2022).  
6 How do these measures of emissions compare to the measures in the Greenhouse Gas Initiative? Direct emissions 
are identical to Scope 1 emissions. However, embodied emissions do not involve the double counting of emissions 
that are included in the Scope 2 and Scope 3 measures.  As our simple example illustrates (further, see Appendix A-
3), in a closed economy, aggregate direct emissions equal aggregate embodied emissions, although the sectoral 
distributions will typically differ. See Section III.1 for a more formal derivation of the relationship between direct 
and embodied emissions. 
7 We do not make an attempt to model the elasticity of final demand. We discuss demand effects below. 
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Using data from EXIOBASE, we estimate direct and embodied emissions of industries at the 6-

digit NAICS level and aggregate to the three-digit level.  EXIOBASE is a publicly available, global 

input-output table, which has been extended to include data on greenhouse gas emissions. Like 

other researchers, we find that emissions are highly concentrated in a few sectors, notably Utilities, 

with the top-10 sectors contributing industries emitting 83 percent of direct emissions. When 

considering embodied emissions, we find that the sectoral concentration of emissions is still 

significant, but it declines considerably.  

We then estimate the impact of the carbon taxes on firm values using Merton’s (1974) model. 

Using measures of firm leverage and stock price volatility, we calculate the share of potential 

market value losses of firms relative to their asset value based on their industry-level carbon 

intensity.  We aggregate these market value losses to the three-digit NAICS level and find that 

potential impacts are highly concentrated in a few industries with high emissions intensity. But the 

impact quickly drops as we move to industries with lower emission intensity. In the full-pass-

through case, we find that the potential losses are less concentrated in just a few industries and 

significant tax effects occur for a broader range of industries. 

With the industry-level losses at hand, we construct a measure of potential impacts at the regional 

level; in the current exercise, we take the county as the relevant regional unit. We calculate county-

level losses as averages of losses across industries, weighted by county-level employment shares 

from the Quarterly Census of Employment and Wages (QCEW). In the no-pass-through case, 

potential county-level impacts are generally mild under a $40 carbon tax, yet they are sizable for 

a few geographic regions under a $100 carbon tax. Similar to our findings at the industry level, in 

the full-pass-through case, potential impacts are more widespread across counties. At the county 

level, agriculture and gas stations are major sources of emissions and county transition risk.  

 

Our measure of the geographic exposure to a carbon tax is the focus of this exercise, but we also 

use this measure to take a preliminary step toward measuring transition risk for community banks. 

To do so, we use banks’ deposit footprint together with the county-level impact due to the carbon 

tax. In this exercise, we take the view that shocks to the industries operating in a bank’s market 

will affect all parts of the bank’s loan portfolio.8 In the no-pass-through case, we find a mild to 

 
8 We discuss this modelling choice in some detail when we present our results. 
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moderate degree of transition risks for community banks as a whole, while the impact is still 

concentrated at a small number of community banks. In the full-pass-through case, we find that 

the impact is more widespread across banks but still relatively small. 

 

The rest of the paper proceeds as follows. In Section II, we discuss other estimates of the effects 

of transition risk change on banks. In Section III, we discuss our data and methodology for 

estimating emissions at the firm level and for estimating the effects of the carbon tax at the sectoral 

level. In Section IV, we construct our estimates of the transition risks at the regional level, which 

we then use to produce an estimate of the risks to community banks in Section V. We conclude in 

Section VI. 

 

II. Literature Review 

There is a growing literature on the effects of climate change on financial markets and institutions.9 

Here we focus on exercises that estimate the effect of climate transition risks for financial 

institutions, most of which have been carried out by economists working at central banks. Like 

most of the exercises, we model the source of transition risk as a scenario for increasing emissions 

taxes.10 All of the preceding exercises have focused on large banks, most of them using European 

data.11 Our focus on small U.S. banks’ exposure to climate transition risk is unique in the literature. 

We discuss the challenges and limitations of this exercise in some detail below. 

Similar to ACPR (2021) and Vermeulen et al. (2021), we derive our industry emissions estimates 

in an input-output setting.12 This approach has several advantages. First, constructing estimates 

using an explicit production network permits the researcher to measure embodied emissions as 

well as direct emissions. In turn, we can take account of price effects of the emissions tax along 

 
9 Giglio et al. (2021) provide an excellent review of the literature on how climate change affects financial markets. 
See also Dennis (2022) for a recent survey of the literature on climate change and financial policy.  
10 We do not embed our estimates in an explicit macroeconomic model as in ACPR (2021) or Roncoroni et al. 
(2021). 
11 For example, see Battiston et al. (2017), Vermeulen et al. (2021), Grippa and Mann (2020), Reinders et al. 
(forthcoming), and Roncoroni et al. (2021). Jung, Engle, and Berner (2023) study large global banks in the U.S., the 
UK, Canada, Japan, and France. Arsenau et al. (2022) and Jung, Santos, and Seltzer (2023) examine large U.S. 
banks. 
12 In contemporaneous work, Krivorotov (2022) also estimates industry emissions in a production network, using 
elasticities from Atalay (2017).  He doesn’t address the regional incidence or the effects on banks. 
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the production chain in our full-pass-through case. The production network literature suggests that 

the input elasticity of substitution may be quite low (e.g., Atalay, 2017), so these price effects may 

be quantitatively important. ACPR (2021) explicitly models the elasticity of substitution using a 

CES production function, while we retain a Leontief production structure, which limits us to polar 

assumptions about tax incidence.13 A second advantage of an explicit input-output structure is the 

flexibility to model different types of transition risks in addition to the effects of an emissions tax. 

For example, Vermeulen et al. (2021) consider the effects of technological adjustments to reduce 

emissions. Although we limit attention to the effects of an emissions tax in the current exercise, 

our methodology could be easily adapted to consider other types of transition risk.  

Recently, Jung, Santos, and Seltzer (2023) investigate how transition risk affects large U.S. banks 

using alternative policies and scenarios (as generated by the models in Jorgenson et al. (2018), 

Goulder and Hafstead (2017), and the Network for Greening the Financial System (NGFS) 

(2022).14 Industry losses are linked to bank losses via the industry composition of their C&I loan 

portfolio.15 Along a similar line, a recent ongoing effort by the Federal Reserve (2023), the “Pilot 

Climate Scenario Analysis Exercise,” intends to evaluate climate-related financial risks for the 

largest banking organizations.16 The transition risk module will use the NGFS’s current policy and 

Net Zero 2050 scenario and will evaluate their impact on the corporate and commercial real estate 

portfolio. Unlike these climate stress tests, we focus on the regional impact of carbon taxes, taking 

account of the sectoral linkages through the input-output production structure. While we do not 

explicitly calculate portfolio losses, we develop a measure of the risks to small banks operating in 

a region. Small banks are on average not very well geographically diversified, so the impact of 

transition risk will derive mostly from the impact of carbon taxes on the region where they operate.     

 

 
13 But see Appendix A5 for a sensitivity test comparing our Leontief estimates to estimates from a production 
network similar to ACPR (2021).   
14 Jorgenson et al. (2018) report industry-level estimates of output effects from different carbon taxes computed off 
their Intertemporal General Equilibrium Model (IGEM).  Goulder and Hafstead (2017), in turn, report industry-level 
estimates of profits effects from carbon taxes generated from their Environment-Energy-Economy (E3) model. 
NGFS (2022) estimates industry-level effects using the G-Cubed model for the U.S. from the three alternative 
climate scenarios adopted by NGFS. 
15 In a related article, Jung, Engle, and Berner (2023) take a market-based approach to measuring banks' exposure to 
transition risk capturing both market risk and credit risk channels and find that transition risk does not seem to pose 
a threat to the U.S. financial system. 
16 Six U.S. bank holding companies will participate: Bank of America, Citigroup, The Goldman Sachs Group, JP 
Morgan Chase & Co, Morgan Stanley, and Wells Fargo. Results will become available sometime before the end of 
2023.   
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III. Assessing Transition Risks at the Industry Level 

In this section, we quantify the transition risks of industries due to the implementation of a carbon 

tax. Our approach draws heavily on Reinders et al. (forthcoming).17  

III.1 Direct and Embodied Emissions Estimates 

We obtain emissions data from EXIOBASE, a publicly available, global, environmentally 

extended input-output table, which has been extended to include data on greenhouse gas emissions 

(GHG emissions).18 It reports data for 44 countries (the U.S. is represented individually) and five 

rest-of-the-world regions, with a significant level of sectoral detail: 200 products and 163 

industries. We collect 2019 data from the latest available version released in October 2021. 

EXIOBASE provides comprehensive up-to-date coverage of the global economy by providing 

data on input-output (I-O) transactions, labor inputs, energy supply and use, GHG emissions, 

material extraction, and land and water use as well as emissions to air, water, and soil. 

EXIOBASE provides estimates of GHG emissions for each product defined by NACE code.19 The 

estimates of emissions are provided for several greenhouse gases, including carbon dioxide (CO2), 

methane (CH4), and nitrous oxide (N20). For each product, we use the reported total measured in  

CO2 equivalents, using a Global Warming Potential (GWP) of 100 years.20 

When estimating industry-level emissions, we differentiate direct emissions and embodied 

emissions. A firm’s direct emissions include only emissions generated in the production of a 

product; EXIOBASE reports direct emissions at the product level. For example, a steel 

manufacturer’s direct emissions include only those generated in the production of steel, but do not 

take account of the emissions generated in the production of the firm’s inputs, for example, iron 

ore, coal, and electricity used in steel production. 

 
17 Our implementation of the financial model is somewhat different from Reinder et al.’s (forthcoming). A more 
significant difference is that we use our estimates of transition risk for industrial sectors to develop a measure of 
transition risk for regions. For a geographically expansive country like the U.S., effects will vary across regions. 
18 Stadler et al. (2021) DOI 10.5281/zenodo.3583070.  See the Appendix for a comprehensive description of 
EXIOBASE and emissions data.  
19 NACE is the classification of economic activities in the European Union. See details from the glossary provided 
by Eurostat. 
20 For example, Methane (CH4) is estimated to have a GWP of 27 to 30 over 100 years. Nitrous oxide (N2O) has a 
GWP 273 times that of CO2 for a 100- year scale. 



 
 

7 
 

We use the EXIOBASE input-output table and its direct emissions estimates to calculate embodied 

emissions. Embodied emissions include both direct emissions in producing goods for final demand 

and the emissions that were generated in the production of the firm’s inputs. In the steel production 

example, embodied emissions also include emissions generated by the mining sector in the 

production of iron and coal as well as emissions generated by the utilities in the production of 

electricity.21 We calculate embodied emissions as follows. Let 𝑦 denote the vector of final demand 

by product, f the vector of direct emissions, 𝑥 the vector of output, 𝐴 the input-output table, and mᇱ = f ᇱxොିଵሺ𝐼 − 𝐴ሻିଵ, where 𝑥ොିଵis a diagonal matrix with the elements of the vector 𝑥ିଵ in the 

main diagonal and zeros everywhere else. Then, we can show that the vector of embodied 

emissions in final demand is 𝑒௬ = 𝑚ෝ𝑦. In Appendix A-3.2, we document how we use the input-

output matrix and the direct emissions estimates from EXIOBASE to compute embodied 

emissions.22 

Once we have our estimates of direct and embodied emissions at the product level, we use a 

concordance file provided by EXIOBASE to map emissions assigned under NACE products to 

industries defined by 2017 North American Industry Classification System (NAICS) codes.23 To 

minimize potential biases, we allocate emissions according to employment shares at the 6-digit industry 

level from the U.S. Bureau of Labor Statistics (BLS) associated with each product24,25 Then we 

aggregate emissions up to the three-digit industry level, which helps to maintain consistency of 

 
21 In a closed economy, direct and embodied emissions must be equal in aggregate. As we show below, they may 
differ quite significantly at the sector level. 
22 Direct emissions are identical to Scope 1 emissions following the Greenhouse Gas Protocol.  Similar to Scope 2 
and Scope 3 emissions, embodied emissions capture linkages along the production chain.  However, as opposed to 
embodied emissions, the measurement of Scope 2 and Scope 3 emissions could result in double counting as they 
incorporate emissions of activities along the entire value chain.  
23 For each of the 200 EXIOBASE products, there is a list of corresponding 6-digit 2017 NAICS codes. Most of the 
environmental data in EXIOBASE derives from the International Energy Agency (IEA). The IEA energy balances 
are structured in matrices representing 63 energy products and 85 energy flows. These matrices show the supply and 
use of energy by different activities for each country. 
24 See Appendix A-3.3 for details. 
25 A drawback of using employment shares for this purpose (for EXIOBASE industries that map into more than one 
NAICS industry) is the possibility of underestimating emissions for a capital-intensive sub-industry with a low 
employment share. For example, the EXIOBASE product “Natural Gas Liquids” maps into NAICS codes 211 (Oil 
and gas extraction), and 213 (Support activities for mining). The BLS employment data results in 29.3 percent of 
emissions from “Natural Gas Liquids” allocated to NAICS 211 and the rest to NAICS 213.  According to the BLS, 
in 2019, NAICS 211 is more capital intensive than NAICS 213 as their capital share equals 0.421 and 0.277, 
respectively. Data on capital levels by industry at a fine level of aggregation is not available but the evidence on 
capital shares suggests that using the distribution of capital could have resulted in a larger share of emissions from 
“Natural Gas Liquids” being allocated to NAICS 211 than the one that results from the employment distribution.  
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our emissions estimates with the financial and employment data we use below.26 As a check on 

our methodology, we compare the distribution of our estimates for direct emissions to that of 

emissions reported by the U.S. Environmental Protection Agency (EPA), confirming that our 

estimates are broadly consistent with the reported emissions.27 

It is important to note that aggregation of emissions at the three-digit level blurs some important 

differences between sub-industries within the same three-digit industry. For example, power plants 

are the largest source of greenhouse gas emissions in the United States.28 At the three-digit level, 

emissions from power plants fall under Utilities (NAICS=221), which is a broad industry 

classification comprised of Electric Power Generation, Transmission and Distribution 

(NAICS=2211), Natural Gas Distribution (NAICS=2212), and Water, Sewage and Other Systems 

(NAICS=2213). Clearly, those sub-industries exhibit different emissions intensity (i.e., emissions 

relative to their outputs) and emit different levels of emissions. More importantly, we notice that 

the aggregation of emissions, even at the 5-digit level, can misrepresent the highly concentrated 

nature of emissions. In an extreme example, Electric Power Generation (NAICS=22111) includes 

both fossil fuel–based electric power plants (NAICS=221112) and other 6-digit sub-industries 

including Solar (NAICS=221114) and Wind Electric Power Generation (NAICS=221115), which 

generate essentially zero emissions.29,30 

Table 1 lists the top-10 industries with the highest emissions from EXIOBASE, both in terms of 

direct and embodied emissions. Overall, our emissions estimates are sensible and broadly 

 
26 Even at the 4-digit level, there are many industries that have missing data in Compustat, which we use to estimate 
the financial effect of the tax. In addition, the coverage of the reported county by industry employment (i.e., 
coverage in terms of the reported aggregate private-sector employment) drops sizably as we consider more 
disaggregated employment data (see more details about this below).  References to Compustat herein refer to 
Compustat data from S&P Global Market Intelligence (2019) via Wharton Research Data Services (WRDS). 
27 We discuss the merits of using data on emissions from EXIOBASE relative to that from the U.S. EPA in 
Appendix A-2. 
28 Power plants account for more than one-quarter of all domestic GHG emissions in the United States according to 
the U.S. EPA. In addition, power plants account for about 59 percent of 2019 GHG emissions from facilities subject 
to the Greenhouse Gas Reporting Program (only facilities emitting over 25,000 metric tons of CO2 equivalent per 
year are required to report). 
29 According to U.S. Energy Information Administration, about 61 percent of electricity generation (utility-scale) 
was from fossil fuels—coal, natural gas, petroleum, and other gases—in 2021. 
30 Based on our estimates from EXIOBASE, fossil fuel–based electric power plants (NAICS=221112) account for 
35 percent and 5 percent of direct and embodied emissions, respectively. Their emissions account for a large 
proportion of direct emissions aggregated at the 5-digit (38 percent) and 3-digit level (46 percent). In contrast, their 
embodied emissions account for a relatively small proportion of embodied emissions relative to the aggregates, 19 
percent, and 22 percent, respectively, at the 5- and 3-digit level. 
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consistent with estimates by others. We find that emissions are quite concentrated, significantly 

more so for direct emissions. Utilities generate nearly half of all direct emissions and the largest-

10 emitting sectors generate 82.4 percent of total direct emissions. Embodied emissions are also 

quite concentrated. Utilities generate 19.9 percent of all embodied emissions, and the largest 10 

emitters generate 69.1 percent of total embodied emissions. 

Direct and embodied emissions can be quite different for industries. Apart from Utilities, one of 

the largest discrepancies arises for Animal Production and Aquaculture, which has a large share 

of direct emissions and a much smaller share of embodied emissions. In contrast, Food 

Manufacturing has a much larger share of embodied emissions than direct. These differences 

suggest that the estimated effects of an emissions tax may be quite sensitive to tax incidence, as 

we verify below. 

 

III.2. Assessing Transition Risks at the Sectoral Level 

To estimate the effects of the emissions tax at the sectoral level, we use Bharath and Shumway’s 

(2008) implementation of the Merton (1974) model to estimate the effect of a permanent emissions 

tax on the value of firms’ assets. For our current exercise, we estimate the effects of both a $40 

and a $100 per metric ton of CO2 emissions tax at the 3-digit NAICS level. In principle, we could 

estimate the effects of the tax at a more disaggregated industry level. Our current choice reflects 

tradeoffs and data limitations that we discuss in more detail in Section IV.31 

As in Reinders et al. (forthcoming), we assume an instantaneous shock 𝜉௞ to asset values of 

industry k, such that immediately after the shock the asset value of the average firm in industry k 

adjusts from  𝑉௞ to 𝑉௞∗. That is, the shock induces a change in asset values to 𝑉௞∗ where 𝑉௞∗ is 𝑉௞∗ = ሺ1 − ξ௞ሻ 𝑉௞ . 
 

31 The analysis in this paper can be generalized to other countries, as long as the country has emissions data from 
EXIOBASE, and input-output matrix and financial data are available. Each country has a different emission mix, and 
the supply chain differences may affect the estimates of the industrial level losses. The U.S. banking industry is also 
less concentrated than most countries in the world. Hence, when taking the analysis to the regional level, regional 
disparities in exposure estimates may not be as large for other countries dominated by a few large banks (e.g. Australia 
and Canada). These large banks would have deposits spread out over most if not all geographical locations, making 
the county-industry level shocks less important at the bank level. 
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The parameter ξ௞ corresponds to a fraction of the asset valuation that is lost due to the discounted 

flow of losses arising from the carbon tax. More specifically, we let the net present value of carbon 

taxes in industry k be 𝑁𝑃𝑉௧௔௫,௞  =  ∑ ሺ1 − 𝑟௞ሻି௧γ௞τ௧௧ୀ଴் , 
where γ௞ captures the exposure of industry k to the carbon tax τ௧ in period t, and 𝑟௞ is the discount 

rate in industry 𝑘. This equation shows that our estimate of climate transition risk at the firm 

level—the decline in firm value associated with the emissions tax—is the present value of the 

firm’s emissions tax payments discounted at the firm’s cost of capital.32 To estimate the industry-

level shock, we average over all firms within a 3-digit industry. In our application, γ௞ is calibrated 

using the level of emissions (in metric tons of CO2 equivalent). That is, the exposure of an industry 

to the carbon tax (i.e., the tax base) is directly represented by its emission level. 

We estimate current asset values using the Merton (1974) model and use the net present value of 

carbon taxes to estimate the fraction of the asset value of the firm that is lost due to carbon taxes 

as follows: 

 ξ௞  =   𝑁𝑃𝑉௧௔௫,௞𝑉௞ . 
The estimate of ξ௞ together with the estimates from the Merton model allows us to derive the losses 

in the market value of debt and equity for the average firm in industry k from which we compute 

the (leverage-weighted) average estimates of climate transition risk losses at the industry level 

denoted by λ௞.33 

Our calibration of the Merton model follows Bharath and Shumway (2008). We work at the three-

digit NAICS code level of aggregation.34 We require estimates of the volatility of a firm’s equity, 

 
32 The methodology is flexible enough to permit adjustments by firms, for example, a shift away from fossil fuel 
use, although we do not consider adjustments in the current exercise. For example, Reinders et al. (forthcoming) 
make some preliminary estimates of the effects of technological adjustments to emissions taxes. They model these 
by adjusting the speed at which the tax is implemented and by making assumptions about technological change at 
the sectoral level. We do not consider changes to demand, technology, or general equilibrium effects (i.e., changes 
in 𝑟௞) that can have a multiplicative effect on losses for some industries, but those can be incorporated by analyzing 
changes to parameters in this equation. 
33 See Appendix A-4 for more details on the estimation of industry-level losses. 
34 Expanding to four or more digits reduces the sample size significantly or requires us to make assumptions about a 
large number of missing industries. Even at three digits, we face some data limitations, so when there are no data 
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the firm’s market leverage ratio, the firm’s cost of capital, and the risk-free rate. We calculate 

equity volatility using stock prices from CRSP from 2007 to 2019, a period that includes the stock 

price volatility of the global financial crisis.35 We require that a firm has at least nine years of data 

and measure volatility by the annualized percent standard deviation of daily stock returns. A firm’s 

market leverage ratio is measured using the market value of the firm’s equity at the end of 2019 

from CRSP and the face value of the firm’s debt in 2019 from Compustat. Following Bharath and 

Shumway (2008), we measure the face value of the firm’s debt by the value of its short-term debt 

plus one-half of the value of its long-term debt. The risk-free rate is computed using the average 

of the 1-year Treasury yield from 2007 to 2019.36 

To derive the net present value of carbon taxes, we use our estimates of emissions discussed in the 

previous section. EXIOBASE emissions are reported at the product level, which we aggregate to 

the sector level. Note, when we aggregate emissions to the sector level, we are including both 

publicly traded and private firms. Thus, our subsequent estimates using data on public firms 

implicitly assume that private and public firms are identical. To calculate the present value of 

emissions tax payments, we use a 6 percent cost of capital and assume that public firms’ share of 

sectors’ emissions is proportional to public firms’ share of those sectors’ revenues. Firms’ 

revenues are taken from Compustat, and the total sector revenues are from EXIOBASE. We 

provide estimates for two values of carbon taxes: $40 and $100 per ton of CO2 equivalent. We 

note that there is evidence that small firms are less energy efficient than large firms (e.g., Bartram 

et al., 2022) and that private firms face a more significant transition shock from an emissions tax 

than public firms (Bartram et al., 2022, and Ivanov, 2024). Since our emissions estimates for an 

industrial sector include emissions by both public and private firms, this suggests that we have 

overestimated emissions intensities for our sample of public firms.37 

 
available at this industry level, we use estimates from one level higher of aggregation. For example, there are no 
reporting firms for NAICS 55 (Management of Companies and Enterprises). To estimate the needed parameters for 
this industry, we take the average of equity volatility from industries with NAICS codes 51, 52, 53, 54, and 56. 
35 References to CRSP herein refer to data from CRSP US Stock Database (2019) from the Center for Research in 
Security Prices, LLC (CRSP) via WRDS. 
36 Board of Governors of the Federal Reserve System (US), Market Yield on U.S. Treasury Securities at 1-Year 
Constant Maturity, Quoted on an Investment Basis [DGS1], retrieved from FRED, Federal Reserve Bank of St. 
Louis; https://fred.stlouisfed.org/series/DGS1 
37 There is also bias in the opposite direction. Private firms are more volatile than public firms, so the true decline in 
asset value in response to an identical emissions tax will be larger than the decline measured for our sample of 
public firms. In practice, the size of a sector’s emissions is the more important determinant of the effect of the tax. 
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We consider two polar assumptions concerning the incidence of the tax for estimating shocks to 

assets values. In both cases, we assume perfectly elastic final demand for all products, so 

consumers do not pay higher prices due to the emissions tax.38 The first case, the no-pass-through 

case, assumes that input demand is perfectly elastic, so the tax does not lead to price effects along 

the production chain and it reduces each final goods producer’s expected profits in proportion to 

its direct emissions. The second case, the full-pass-through case, assumes that input demand is 

perfectly inelastic, so the tax leads to a one-for-one price increase for all inputs in proportion to 

the input producer’s emissions. In this case, each firm bears the tax not only on its direct emissions, 

but also on the emissions embodied in its inputs via the increase in input prices. 

It is important to note that these two cases do not reflect different types of taxes. Both cases capture 

the effect of a tax on firms’ direct emissions. The different effects on firms’ expected profits 

depend solely upon our assumptions about input demand elasticities and, thus, the incidence of the 

tax. Our intention in considering these two polar cases is to make a preliminary attempt to gauge 

the importance of different assumptions about tax incidence on the sectoral and geographic effects 

of the emissions tax. While our exercise highlights the importance of the role of demand 

elasticities, further progress will require a more realistic description of the relevant elasticities.39 
40 

Tables 2 and 3 present the estimated market value losses for the top-10 industries (when sorted by 

asset value losses) for the no-pass-through cases and full-pass-through cases, respectively. Table 

2 shows that a carbon tax of $40 leads to nontrivial value losses for the most exposed industries, 

such as Air Transportation, Utilities, and Nonmetallic Mineral Product Manufacturing. These top-

3 most exposed industries lost over 20 percent of their market value according to our estimates. If 

a higher carbon tax of $100 is implemented, then the losses are significantly larger. However, the 

 
38 Less elastic consumer demand would reduce the effects of the tax on firm profits and, thus, asset values, because 
consumer would bear some of the tax through higher prices. 
39 A recent literature has developed general equilibrium models with a particular attention to sectoral heterogeneity 
and understanding how shocks propagate through production chains while taking seriously sectoral elasticities of 
substitution of intermediate inputs.  See, for example, Horvath (2000), Atalay (2017), or Baqaee and Farhi (2020).  
This approach is taken in Devulder and Lisack (2020), for the analysis of transition risk in France.  
40 In Appendix A5, we present a production network model with CES production functions and compare our results 
to two polar cases in terms of the elasticity of substitution of intermediate inputs. We relate the low elasticity case to 
the Full Pass-Through case and the high elasticity case to the No Pass-Through case.  We find that our approach 
does a good job in capturing these two cases, as estimated losses are highly correlated.  The appendix also discusses 
estimates for an intermediate value of the elasticity of demand.  Results indicate that estimates scale (to an 
approximation) linearly with the value of the elasticity of substitution of intermediate inputs.    
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impact quickly drops as we move down to less exposed industries. For example, Oil and Gas 

Extraction is the 9th most exposed industry, and the market value loss is modest at 5.2 percent for 

a $40 carbon tax. Table 3 reports the results of a similar calculation taking account of price effects 

along the production chain. While the exact order of the most exposed industries changes, the main 

message remains the same: A carbon tax’s impact is mostly concentrated in the few most exposed 

industries. 

We do not present separate estimates of the changes in the value of equity and debt. We note that 

the effect of the carbon tax on the value of firms’ debt alone is very small, as nearly all our 

measured effect is due to the fall in the value of equity.41 

 

IV. Assessing the Transition Risks of Regional Economies 

Our primary goal is to develop estimates of transition risk to regional economies. Although the 

precise mechanisms through which an emissions tax may affect the regional economy are complex, 

we take the simplifying view that the industrial mix of the firms operating in the region should be 

an important determinant of the regional effect of the tax. We expect that a negative shock to the 

expected profits of firms with operations in a region will lead to further effects, for example, a 

decline in employment or a decline in commercial real estate values. Although a full analysis of 

the regional effects of an emissions tax will take account of these mechanisms, in our preliminary 

analysis we construct a summary measure of the effect of the tax by the decline in the value of 

firms operating in the region. And because we will use this measure to get a sense of the risks to 

community banks, we carry out our analysis at the county level. 

Let empk,c be the number of employees for an industry k at a county c. To proxy for a county’s 

exposure to each industry, we use the share of employment (wk,c) calculated as 𝑤௞,௖ =𝑒𝑚𝑝௞,௖/∑ 𝑒𝑚𝑝௝,௖௝ . Then, we estimate county-level exposures to the emissions tax by combining 

a county’s industrial exposure with our estimates for industry-level value losses. That is, denoting 

by Λk our estimate for the losses for an industry k, the transition risks for a county c (Λc) are a 

 
41 Our finding that the effects of an emissions tax on the value of firms’ debt are relatively small is similar to the 
findings of Reinders et al. (forthcoming), as well as other researchers using different methodologies. 
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weighted average of industry-level losses, using the employment share of industries operating in 

each county as weights.  Thus, for each county c, Λ௖ = ∑ 𝑤௞,௖ × Λ௞௞ . 

While the QCEW provides disaggregated employment data up to the 6-digit NAICS code level, 

there are two reasons we use the three-digit NAICS code level. First, the coverage of reported 

industry employment drops sizably as we consider more disaggregated employment data. The total 

reported three-digit NAICS code-level employment over counties is about 120 million, which 

accounts for approximately 94 percent of the private-sector employment at the national level. This 

coverage reduces to 87 percent and 77 percent, respectively, as we move to the four- and 6-digit 

NAICS code level. Second, the coverage is particularly low for a few transition-sensitive 

industries. For example, electric utility sector produces more than half of greenhouse gas 

emissions, one of the most vulnerable sectors with respect to an emissions tax. But the electric 

utility sector exhibits relatively low coverage compared to other industries, since employment at 

utilities is relatively low and also because of nondisclosure policies associated with the QCEW 

data. Employment at electric utilities reported at the three-digit NAICS level for all counties 

accounts for 77 percent of the sector’s national aggregate employment. At the four-digit level, the 

aggregate-reported employment at the sub-component industries falls to 31 percent of the sector’s 

national aggregate employment. 

Figures 1 and 2 display the geographic dispersion of our estimated losses for both the no-pass-

through and full-pass-through cases. Each figure shows the results for a $40 carbon tax (Panel A) 

and a $100 carbon tax (Panel B). To complement these maps, Figure 3 provides the histograms of 

county-level impacts from carbon taxation in each case for a $40 carbon tax (Panel A) and a $100 

carbon tax (Panel B). Our findings are twofold. First, we find that the potential impacts from the 

carbon tax are generally mild to moderate across counties in the no-pass-through case. For 

example, only 2 percent of counties—49 among 3,121 counties in our sample—experience larger 

than 2 percent market value losses under a $40 carbon tax. The proportion of counties experiencing 

at least a 2 percent market value loss increases to 15 percent in the full-pass-through case under a 

$100 carbon tax. 

Second, in the full-pass-through case, we find broader geographical impacts. In the no-pass-

through case, under a $40 carbon tax, 30 percent of counties experience more than a 2 percent 

market value loss. About 91 percent of counties would experience larger than a 2 percent value 
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loss under a $100 carbon tax, and fully one-third of those counties would experience larger than a 

5 percent loss. 

Table 4 lists the 10 counties with the largest market value losses in the no-pass-through case. For 

each county, the fourth column reports its total private-sector employment. The next two columns 

report a county industries’ market value losses due to a $40 tax and a $100 tax. The last column 

reports three-digit NAICS codes for the top-3 industries with the largest employment reported, 

along with the employment share of those industries in parentheses. 

The highly impacted counties tend to have large exposures to the highly impacted industries. For 

example, many of the most affected counties have sizable employment in industries such as Air 

Transportation (NAICS=481), Utilities (NAICS=221), Nonmetallic Mineral Product 

Manufacturing (NAICS=327), Mining (except Oil and Gas) (NAICS=212), Support Activities for 

Mining (NAICS=213), and Specialty Trade Contractors (NAICS=238). Notice that the heavily 

impacted counties are relatively small. All the counties in the table have smaller employment than 

the median county (6,595). 

Table 5 lists the 10 counties with the largest market value losses in the full-pass-through case. The 

number of counties experiencing significant losses are larger when we take account of the price 

effects along the production chain. Interestingly, the mix of industries generating large market 

losses are different in this case. We find larger market value losses both in small-sized counties 

having relatively large exposures to Gasoline Stations (NAICS=447), and in relatively large 

counties with significant employment in industries, such as Paper Manufacturing (NAICS=322) 

and Air Transportation (NAICS=481). 

 

V. Assessing Transition Risks at Community Banks 

We use our measures of transition risk at the regional level to produce preliminary estimates of 

transition risk at U.S. financial institutions. Related exercises have been carried out for large banks 

in the Netherlands (Reinders et al. (forthcoming), France (ACPR, (2021)), Mexico (Roncoroni et 

al. (2021)), Norway (Grippa and Mann (2020)), and the U.S. (Arsenau et al. (2022) and Jung, 

Engle, and Berner (2023)). By analogy to standard stress testing methodologies, these studies use 
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loan-level data available to regulators to estimate shocks to bank portfolios from the imposition of 

a carbon tax.42 

We take a somewhat different approach to take a step toward measuring transition risks at U.S. 

community banks, for which loan-level data are not available. To be clear, even if data on 

individual loans were available for small banks, there would be no simple mapping of our measure 

of sectoral transition risks to community bank portfolios, which are primarily composed of real 

estate loans, with only a modest share of C&I loans. And the borrowers in community banks’ C&I 

portfolios are more likely to be dentist offices and local retailers, rather than the public firms that 

appear in Compustat. Nonetheless, a shock to the firms operating in a community bank’s lending 

footprint is likely to have significant effects on the bank’s health. As we argue above, declines in 

firms’ expected profits within a region are likely to affect employment and local real estate 

markets, which will affect bank portfolios.43 And since the vast majority of community banks 

operate in a single county or a small number of contiguous counties, the county is the relevant 

geographical unit for measuring community banks’ lending footprints.44 

Recognizing the limitations of our analysis, we proceed as follows: 

To identify community banks for our empirical application in this section, we adopt the designation 

proposed by the Federal Deposit Insurance Corporation (FDIC) Community Banking Study (CBS) 

as of December 2019. The FDIC establishes standard requirements for lending and deposit 

gathering and for limits on the geographic scope of operations that a banking organization must 

meet to be designated as a community bank. See the CBS for details regarding criteria adopted by 

the FDIC. 

 
42 Most of these papers are part of a growing literature and interest of central banks in analyzing the link between 
financial stability and climate change.  Climate stress tests that evaluate transition risk have some important 
differences but are similar in spirit to standard stress tests (i.e., those with a primary focus on capital and liquidity 
levels during scenarios of stress) performed by macroprudential supervisors. The exercise we perform is not 
intended as a climate stress test, that is, we do not estimate a bank’s portfolio losses or the probability that any 
bank’s capital falls below the required level.   
43 We view the possible effects on local real estate markets as the most likely mechanism through which a carbon 
tax would directly affect community bank portfolios. 
44 Many small banks like community banks operate within a single county and the vast majority operate within a few 
counties clustered in a limited geographic area. For example, 35 percent of banks operate branches in one county, 
and 22 percent of banks operate branches in two counties, according to FDIC’s Summary of Deposits. While our 
current exercise uses the county as the geographic unit, our methodology is easily modified to measure transition 
risks for broader regions. 
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To proxy for a bank’s lending footprint, we use a bank’s branch deposits obtained from the FDIC’s 

Summary of Deposits as of June 2019.45 Given our estimates for county-level transition risks, we 

calculate a bank-level estimate of the transition risks within its lending footprint. Specifically, let 

depi,b,c be deposits of a bank i, which is held in a branch b located in a county c. Given a bank’s 

branch-level deposits, we calculate a bank i’s deposit exposure in a county c (depi,c) by summing 

up branch deposits located in the same county, 𝑑𝑒𝑝௜,௖ = ∑ 𝑑𝑒𝑝௜,௕,௖௕ . Then, a bank’s exposures to 

counties with its branches are proxied by its deposit share (wi,c) across counties with branch 

operation; that is, 𝑤௜,௖ = 𝑑𝑒𝑝௜,௖/∑ 𝑑𝑒𝑝௜,௖௖ . 

Our estimates for the bank-level transition-risks measures are calculated as weighted averages of 

county-level estimates for the transition risks, using banks’ exposures to counties with branch 

operation as weights; that is, Λ௜ = ∑ 𝑤௜,௖ × Λ௖௖ .46 To quantify the potential impacts on a 

community bank’s operation, we multiply a bank-level estimate for the transition risks (Λ௜) by a 

bank’s loans.  We then express these losses as a percentage of either the bank’s total assets or tier 

one capital.47  

It is important to be clear that our measure of climate transition risk for community banks is not 

an estimate of expected portfolio losses due to an emissions tax. Instead, it is a preliminary attempt 

to get a sense of transition risks within the bank’s lending footprint. We express the impact of the 

emissions tax as a percentage of bank assets or bank capital as a normalization. 

Figure 4 plots a histogram of bank-level impacts from the tax (scaled by loan to assets). Since 

community banks generally have narrow geographic footprints, the histogram of bank exposure is 

similar to the histogram of county exposure. In the no-pass-through case, the shock to firms in 

banks’ lending footprint are below 1 percent of assets for a $40 carbon tax or 2 percent for a $100 

carbon tax when looking at direct emissions. The full-pass-through case with a $100 tax reflects 

somewhat larger value losses but the losses are still moderate. In the aggregate, the carbon taxation 

would result in mild to moderate impacts on community banks’ loan portfolios (Table 6). In the 

 
45 The FDIC’s Summary of Deposits is the annual survey of branch office deposits as of June 30 for all FDIC-
insured institutions, including insured U.S. branches of foreign banks. All institutions with branch offices are 
required to submit the survey; institutions with only a main office are exempt. 
46 We perform a sensitivity analysis using the commuting zone as the geographic unit and found that results are not 
affected by this choice.   
47 We measure a bank’s maximum potential exposure by loans, rather than assets, because the value of securities and 
cash are not likely to be sensitive to local economic shocks. 
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no-pass through case, with a $40 carbon tax on direct emissions, community banks would 

experience losses that represent 0.3 percent of total assets and 2.7 percent of bank capital. We 

observe larger impacts from the higher carbon tax rate and in the full-pass-through case. However, 

even under the most severe case—$100 carbon tax on full pass-through case—the total loss 

accounts for 2.0 percent of total assets of community banking organizations. 

 

V. Conclusion 

This paper estimates potential climate transition risk at the industry, county, and small bank level. 

We construct a unique data set on emissions at the product/industry level. We find that the impact 

for some industries can be large (mostly due to high emissions intensity level) and that impacts at 

the sectoral level are quite sensitive to the incidence of the tax. However, the effects at the county 

and bank level appear to be relatively small. 

In subsequent work, we intend to address some of the limitations of the current exercise. In 

particular, more realistic input and final demand elasticities for focusing on more disaggregated 

industries with significant emissions (direct or embodied) should improve our estimates. We can 

also extend our analysis to different forms of transition risk (e.g., demand shifts or technological 

developments). Finally, a serious look at transition risk at the regional level requires a more careful 

description of the mechanisms linking shocks to firms’ profits to the regional economy. 
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Tables and Figures 
Table 1: List of industries with the highest emissions 

 

 

Note: The column “Emissions (% of total)” reports each 3-digit NAICS industry’s share of aggregate greenhouse  

gas emissions measured in CO2 equivalent. We do not show the estimates of the “Public Administration” industries  

(2-digit NAICS 92) since there are no firms in Compustat to estimate the Merton (1974) model.   

  

Direct Emissions Embodied Emissions

Rank NAICS Description
Emissions 
(% of total)

NAICS Description
Emissions 
(% of total)

1 221 Utilities 43.0 221 Utilities 19.6

2 213 Support Activities for Mining 7.1 311 Food Manufacturing 8.4

3 112
Animal Production and 
Aquaculture

6.2 324
Petroleum and Coal Products 
Manufacturing

5.7

4 562
Waste Management and 
Remediation Services

6.2 531 Real Estate 4.2

5 481 Air Transportation 4.8 238 Specialty Trade Contractors 4.1

6 324
Petroleum and Coal Products 
Manufacturing

4.3 336 Transportation Equipment Manufacturing 3.9

7 115
Support Activities for Agriculture 
and Forestry

3.9 325 Chemical Manufacturing 2.7

8 325 Chemical Manufacturing 3.0 213 Support Activities for Mining 2.7

9 327
Nonmetallic Mineral Product 
Manufacturing

2.4 481 Air Transportation 2.5

10 311 Food Manufacturing 1.6 621 Ambulatory Health Care Services 1.9

Sub-total 82.4 55.8
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Table 2: List of the top-10 industries with the largest market value losses (no-pass-through) 

 

Note: Output is measured in billion USD, and emissions are in million metric tons of CO2 equivalent. Emission 

intensity is measured in metric tons of CO2 equivalent per million USD.   

Rank NAICS Description Output Emissions
Emission 
Intensity

$40 tax $100 tax

1 481 Air Transportation 287 232 808 26.9% 77.9%

2 221 Utilities 627 2087 3,330 23.8% 60.0%

3 327 Nonmetallic Mineral Product Manufacturing 162 115 709 21.2% 52.3%

4 486 Pipeline Transportation 20 52 2,639 17.3% 43.2%

5 324 Petroleum and Coal Products Manufacturing 539 210 389 12.8% 32.1%

6 562 Waste Management and Remediation Services 181 300 1,658 8.7% 21.7%

7 212 Mining (except Oil and Gas) 81 56 690 6.5% 16.2%

8 213 Support Activities for Mining 321 343 1,069 6.3% 15.8%

9 211 Oil and Gas Extraction 53 59 1,118 5.2% 13.1%

10 315 Apparel Manufacturing 74 5 65 4.7% 11.6%

Market Value Losses
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Table 3: List of the top-10 industries with the largest market value losses (full-pass-through) 

 

 

Note: Output is measured in billion USD, and emissions are in million metric tons of CO2 equivalent. Emission 

intensity is measured in metric tons of CO2 equivalent per million USD.   

Rank NAICS Description Output Emissions
Emission 
Intensity

$40 tax $100 tax

1 324 Petroleum and Coal Products Manufacturing 539 303 562 18.6% 55.4%

2 481 Air Transportation 287 133 462 15.3% 38.9%

3 315 Apparel Manufacturing 74 13 176 12.5% 30.7%

4 221 Utilities 627 1045 1,667 11.9% 29.8%

5 447 Gasoline Stations 17 1 39 10.0% 24.2%

6 238 Specialty Trade Contractors 1090 221 202 9.1% 22.8%

7 486 Pipeline Transportation 20 26 1,304 8.5% 21.3%

8 311 Food Manufacturing 860 448 521 6.6% 16.4%

9 323 Printing and Related Support Activities 82 6 78 6.4% 16.1%

10 337 Furniture and Related Product Manufacturing 151 40 267 4.6% 11.6%

Market Value Losses
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Table 4: List of the top-10 counties with the largest market value losses (no-pass-through) 

 

 

Note: Counties sorted by Market Value Losses under $40 carbon tax.  In this case, the order is identical when sorting 

counties using Market Value Losses under the $100 carbon tax.   

  

Rank State County Employment $40 tax $100 tax

1  Alaska Lake and Peninsula Borough 1263 10.7% 30.4%

2  Tennessee Stewart County 4282 10.5% 26.3%

3  California Alpine County 127 10.0% 25.2%

4  Mississippi Jefferson County 593 9.5% 24.0%

5  North Dakota Mercer County 13284 9.2% 23.2%

6  Montana Rosebud County 3268 7.5% 18.8%

7  Mississippi Kemper County 628 7.4% 18.6%

8  Texas Newton County 511 7.1% 17.8%

9  Illinois Alexander County 509 6.8% 17.1%

10  Nevada Esmeralda County 155 6.2% 15.5%

Market Value Losses
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Table 5: List of the top-10 counties with the largest market value losses (full-pass-through) 

 

Note: Counties are ordered by Market Value Loss under $40 tax.  The same counties are included in the top-10  

according to Market Value Losses under a $100 tax (the order is slightly different).  

  

Rank State County Employment $40 tax $100 tax

1  Colorado Kiowa County 226 8.4% 20.6%

2  Texas Terrell County 111 8.0% 19.5%

3  Virginia Charles City County 2267 6.6% 16.6%

4  Texas Stonewall County 59 6.4% 16.1%

5  Alaska Lake and Peninsula Borough 1263 6.4% 16.3%

6  Alaska Aleutians East Borough 13558 6.3% 15.7%

7  Mississippi Jefferson County 593 6.3% 15.6%

8  Missouri Schuyler County 310 6.2% 15.2%

9  Montana Rosebud County 3268 5.9% 14.8%

10  Georgia Hancock County 56 5.9% 14.3%

Market Value Losses
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Table 6: Aggregate losses of the community banking organizations 

 

 

  

No pass-through Full pass-through No pass-through Full pass-through

As a proportion of Aggregate Assets 0.31% 0.82% 0.80% 2.04%

As a proportion of Aggregate Equity 2.74% 7.22% 7.05% 18.04%

$40/ton $100/ton



 
 

27 
 

Figure 1a: County-level impact of $40 carbon tax (no-pass-through) 

 

Figure 1b: County-level impact of $100 carbon tax (no-pass-through) 
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Figure 2a: County-level impact of $40 carbon tax (full-pass-through) 

 

 

Figure 2b: County-level impact of $100 carbon tax (full-pass-through) 
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Figure 3: Distribution of market value losses across counties 

 

Note: Each column includes the number of counties associated with corresponding market value losses (i.e., 
unweighted). The similar pattern is observed when the size of counties is considered (i.e., when bins are weighted by 
the size of counties proxied by their total reported private-sector employment). 

 

 

 

 



 
 

30 
 

Figure 4: Distribution of market value losses across banks (scaled by loans to assets) 

 

 
Note: Each column includes the number of community banks associated with corresponding market value losses (i.e., 

unweighted). The similar pattern is observed when the size of banks is considered (i.e., when bins are weighted by the 

operation size proxied by banks’ total assets). 
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A-1 Introduction

This appendix describes EXIOBASE, a global Input-Output table extended to include envi-

ronmental information, and explains how we obtain direct emissions and embodied emissions

in final demand at the industry level. We also describe the details of how we obtain the es-

timates of transition risk at the sectoral level. We also present the details of the general

equilibrium production network model.

A-2 Description EXIOBASE

We obtain emissions data from EXIOBASE (see Stadler et al. (2021)). EXIOBASE is a

global, detailed Multi-Regional Environmentally Extended Supply-Use Table (MR-SUT) and

Input-Output Table (MR-IOT). EXIOBASE 3 (the latest version at the time we were writ-

ing the paper) was developed in the European Union Seventh Framework Program project

DESIRE (Development of a System of Indicators for a Resource efficient Europe). It pro-

vides environmental information and features times-series data at a high level of product

and industry detail as well as a physical representation of the world economy.1

*Berlin, D’Erasmo, and Yu, Federal Reserve Bank of Philadelphia; Byun, Federal Reserve Bank of Dallas.
Thanks to PJ Elliott and Gabriel Butler for excellent research assistance. Disclaimer: The views expressed
are those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of Dallas,
Federal Reserve Bank of Philadelphia or the Federal Reserve System. Any errors are the responsibility of
the authors.

1More information about EXIOBASE can be found in their website (see also doi 10.5281/zenodo.3583070).

https://www.EXIOBASE.eu/index.php/about-EXIOBASE


EXIOBASE reports data for 44 countries (the U.S. is represented individually) and 5

rest-of-the-world regions constructed on a 200-product and 163-industries resolution. It is

built from several primary data sources (see Wood et al. (2015) for a full description of data

sources). Industry and product output per country data were gathered from several national

account databases (including the national accounts and national monetary supply-use tables

(MSUTs)) and various international databases such as the Food and Agriculture Organi-

zation statistical database (FAOSTAT) and International Energy Agency’s (IEA) energy

balances.2 The time series extends from 1995 to 2022 but some data is derived from “now-

casts” (i.e., using technical coefficients combined with measures of output or consumption).

We use the latest available version which is version 3.8.2 (released in October 2021).3 In the

particular case of the U.S., and for the version of the data we use, Supply-Use tables and

Input-Output tables derive from data from the United Nations (UN) and the Bureau of Eco-

nomic Analysis (BEA). This data is updated to 2018, with GDP and gross import/export

projections from IMF after that. At a detailed level (product / industry), energy and

energy-related emissions data are updated to 2015 using IEA energy balances (see link here

for details on reports and available data from IEA). At an aggregate level, all CO2 fossil

emissions are updated to 2019 based on the Edgar Database (see here for details on Edgar);

all other GHG emissions are updated to 2017 using the PRIMAP-hist dataset (see Gütschow

et al. (2016) and this link for a description on how the industry level estimates are obtained)

with sectoral (Intergovernmental Panel on Climate Change (IPCC) based) emissions by gas

available.4 More recent data than those reported as end points are “now-casts”.5

With data on input-output (I-O) transactions, labor inputs, energy supply and use, GHG

emissions, material extraction, land and water use, as well as emissions to air, water, and soil,

EXIOBASE provides a comprehensive up-to-date coverage of the global economy. It provides

the first time series with adequate disaggregation of the agricultural, forestry, and mining

sectors for proper consideration of the land, water, and material pressures related to these

sectors, as well as a detailed division of energy extraction and transformation industries (see

2Stadler et al. (2018) provide detailed information on the sources (see the main text and Supplements S1
and S9).

3The data is publicly available and hosted in Zenodo. See link here. (version 3.8.2 October, 2021; link
last accessed 2/4/2022)

4EDGAR is a multipurpose, independent, global database of anthropogenic emissions of greenhouse gases
and air pollution on Earth. EDGAR provides independent emission estimates compared to what reported
by European Member States or by Parties under the United Nations Framework Convention on Climate
Change (UNFCCC), using international statistics and a consistent IPCC methodology.

5Land, material, and water related data are purely reliant on now-casts post 2011. In this version, there
is a major update to the historical time-series of non-fuel combustion GHG emissions. Non-fuel combustion
GHG emissions are now scaled to match the PRIMAP-hist dataset, with sectoral (IPCC based) emissions
by gas available.
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Wood et al. (2018)). This puts EXIOBASE in a unique position compared to other existing

MRIO databases, such as Eora or WIOD (for a comparison of MRIO databases, see Tukker

and Dietzenbacher (2013)).6 The main benefit of using data with this structure is that it

allows us to use information on “direct” emissions (i.e., what the Intergovernmental Panel

on Climate Change calls the “Tier 1” or “default” method of calculating emissions) at the

industry or product level but it also opens the possibility to derive “indirect” emissions or

what environmental researchers call this a “life cycle” or “footprint” measure of emissions and

international economists call it a “value chain” measure of emissions (see Shapiro (2021)).

Other data sets contain information on emissions. However, most of these other data sets,

are not as detailed, complete, and methodologically consistent (see Stadler et al. (2018)).

Importantly, as Shapiro (2021) describes, disaggregation to industry detail is EXIOBASE’s

focus as it tends to produce more accurate analysis of CO2 emissions (Steen-Olsen et al.

(2014); de Koning et al. (2015)). In the US, the Environmental Protection Agency (EPA)

provides data on emissions with different level of coverage and disaggregation. The more

comprehensive data comes from the Inventory of U.S. Greenhouse Gas Emissions and Sinks

(Inventory). The Inventory is a document prepared annually by EPA, for over 25 years, that

estimates the total greenhouse gas emissions across all sectors of the economy using national-

level data (see last report here). This includes estimates of greenhouse gas emissions from

fossil fuel combustion, various industrial processes, and agricultural sources. The compre-

hensive greenhouse gas data presented in the Inventory comprise the official U.S. estimate

of total national emissions that is submitted to the United Nations in accordance with the

Framework Convention on Climate Change.7 A drawback of this data for our analysis is

that it is reported at a high level of aggregation (i.e., not very granular industry or product

information is provided). An additional source of data that the EPA provides derives from

the Greenhouse Gas Reporting Program (GHGRP). The GHGRP collects detailed emissions

data from the largest greenhouse gas emitting facilities in the U.S. The GHGRP has col-

lected data annually since 2010. These data can be used to compare facilities or industries

at a very detailed level. However, the GHGRP includes most, but not all, U.S. emissions.

In general, only large suppliers of greenhouse gas emitting products, or facilities that emit

more than 25,000 metric tons of CO2 equivalent (CO2e) per year (roughly equivalent to the

CO2 emitted from the burning of 136 rail cars of coal), are required to report their annual

6The Bureau of Economic Analysis (BEA) provides Input-Output information for the US at a level of
disaggregation that is similar to 3-digit NAICS codes (71 industries).

7In preparing the annual emissions inventory report, EPA collaborates with hundreds of experts represent-
ing more than a dozen U.S. government agencies, academic institutions, industry associations, consultants
and environmental organizations. EPA also collects greenhouse gas emissions data from individual facilities
and suppliers of certain fossil fuels and industrial gases through the Greenhouse Gas Reporting Program.
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greenhouse gas emissions. Some entire sectors, such as the agricultural and land-use sectors,

are not required to report. When including suppliers these emissions cover approximately

85% of total emissions in the US. Without suppliers the number is closer to 50%. A drawback

of the GHGRP data relative to EXIOBASE is that they do not allow to obtain estimates

that go beyond “direct” emissions.

A-3 Emissions Data

This section describes how to use EXIOBASE to obtain measures of Greenhouse Gas (GHG)

emissions. The public version of EXIOBASE is housed in Zenodo. We obtained the data

(version 3.8.2, October 21, 2021) from here. There are files with data from 1995 to 2022.

We focus on year 2019. We use the monetary transactions version of the data which among

other things provides information on GHG emissions. We use data in file IOT 2019 pxp.zip.

This file provides information by country and product which we link to 6 digits NAICS codes

using a concordance file provided by EXIOBASE (see more details about this below). Table

A.1 lists the files from EXIOBASE we use. We use lower-case bold letters for (column)

vectors as in x. We use upper-case bold letters for matrices as in Z.

File Readme 3 8 1.txt (which can be found here) describes the different components and

the end points of the data. EXIOBASE reports data for 44 countries and 5 rest-of-the-

world regions constructed on a 200-product (P ) and 163-industries (N) resolution. The US

is represented individually in EXIOBASE. We denote the number of countries/regions by

C = 49. There are also K = 6 Final Demand Sectors.

Table A.1: Variables EXIOBASE 3 (version 3.8.2)

Symbol Description Units EXIOBASE File
Industry Classification - “industries.txt”
Product Classification - “products.txt”

f ′ Greenhouse Gas Emissions by country/product kg CO2-eq “\impacts\F.txt”
f ′hh Greenhouse Gas Emissions

by country/final demand sector kg CO2-eq “\impacts\F hh.txt”
x Output by country/product M.EUR “x.txt”
v Value Added M.EUR “\impacts\F.txt”
Y Final Demand M.EUR “Y.txt”
y Final Demand M.EUR derived from “Y.txt”
A Input-Output Matrix (Technical Coefficients) M.EUR “A.txt”
Z Input-Output Matrix M.EUR “Z.txt”
m′ Emission Multiplier Vector M.EUR “\impacts\M.txt”
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A-3.1 Direct Emissions

Direct emissions refer to emissions directly associated with a sector or product. The carbon

footprint stressors available in EXIOBASE cover each industry/product across all coun-

tries/regions.The satellite and impact accounts contain the relevant information. All sources

of emissions are included (following the Intergovernmental Panel on Climate Change (IPCC)

categorization), including from agricultural production, but excluding those from the spe-

cific category of “land use, land use change and forestry,” which are difficult to attribute to

production sectors within a certain year.

The GHG footprint of a particular country/product or final demand sector is measured

as the total emissions of GHG gases in kilograms of CO2 equivalents (tCO2-eq). It includes

GHG, like CO2, CH4, and N20 and calculates their Global Warming Potentials (GWP).8

� Variable “GHG emissions (GWP100) — Problem oriented approach: baseline (CML,

2001) — GWP100 (IPCC, 2007) kg CO2 eq.”, that we take from the file “F.txt” in

the “Impact” folder, provides the product level information for all countries and we

extract the information for the US.9

� The file F.txt in the “satellite” folder provides a decomposition of the different GHG

and different sources of emissions. It is possible to, for example, obtain detail emissions

from CO2 combustion, CO2 non-combustion - cement production, CO2 - agriculture -

peat decay.

We denote the (column) vector of direct emissions by f . This is a vector of size PC × 1

(i.e., each element corresponds to the value of direct emissions per product-country pair).

A-3.2 Embodied Emissions in Final Demand

In this subsection, we describe how to go from direct emissions to embodied emissions in

final demand (see Hertwich and Wood (2018), Meng et al. (2018), and Yamano and Guilhoto

(2020)). In order to do so, we first introduce some standard Input-Output table notation

(e.g. Miller and Blair (2009)). For ease of exposition, the equations in this section correspond

to a given country (closed economy) but can easily be extended to include more countries

and/or regions (i.e., we work with vectors of size P × 1 but the analysis can be extended

8The Global Warming Potential (GWP) was developed to allow comparisons of the global warming
impacts of different gases. CO2, by definition, has a GWP of 1 regardless of the time period used, because it
is the gas being used as the reference. Methane (CH4) is estimated to have a GWP of 28–36 over 100 years
(see here). As most of the literature, we’ll focus on CO2 equivalent emissions using GWP 100.

9The IPCC manual with the corresponding categories can be found here (link last accessed February 3,
2022.
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to use vectors of size PC × 1 that include many countries/regions as well as imports and

exports). We denote by xi the total output (production) of sector i, by zij the value of a flow

(in monetary units) from sector i to sector j (or the inter-industry sales by sector i to sector

j), and yi the total final demand for sector i′s product (yi corresponds to the sum across the

K final demand sectors). As before, we use lower-case bold letters for (column) vectors and

capitalized bold letters for matrices. In compact form, we can represent the Input-Output

as follows

x = ZiP + y. (A.3.1)

where iP is a column vector of 1’s of size P (use to add across columns). The vectors x and

y are of size P × 1 and the matrix Z is of size P × P . The total (gross) output for a given

industry can be calculated as the row sum of intermediate demand Z and final demand y

for its output. More specifically, xi =
∑P

j=1 zij + yi. Each column in matrix Z represents

the required inputs flows from other industries to produce a given amount of gross output.

If we denote by v the vector of value added, gross output of sector j can also be calculated

as the column sum of the inputs required to produce product j plus value added. That is

xj =
∑P

i=1 zij + vj. Using this notation, Table A.2 presents a stylized Input-Output table

with P sectors of production (still for a closed economy).

Table A.2: Stylized Input-Output Matrix

Sectors Final Total Gross
Sector 1, 2, . . . , P Demand Output

1
2 Z y x
...
P

Value Added v′

Total Outlays x′

Let A = Zx̂−1 denote the P × P matrix of technical coefficients where (as in Miller and

Blair (2009)) a hat over a vector denotes a diagonal matrix with the elements of the vector

A.6



along the main diagonal.10 Then, equation (A.3.1) can be re-written as

x = Ax+ y, (A.3.2)

so

x = (I−A)−1y = Ly, (A.3.3)

where L = (I−A)−1 is known as the Leontief inverse or the total requirements matrix.

With estimates of direct emissions at hand (see Section A-3.1) and the corresponding

Input-Output table, our objective is to compute embodied emissions in final demand which

capture emissions associated with the production stage (i.e., they occur in the supply chain

and are embodied in inputs from other sectors). The idea is to allocate direct emissions

using the observed flows across sectors (i.e., obtain a simile Input-Output table for emission

flows) to the corresponding sector. More specifically, the carbon footprint (or Total Gross

Emissions) corresponds to the sum of direct emissions and the emissions embodied in the

intermediate inputs of the process. Let fj denote direct emissions in the production of

sector/product j, mi the emissions embodied per unit of output i, and mj the emissions

embodied per unit of input j. We also denote by fhh direct emissions from Final Demand.

Adding across rows, in matrix form, total gross emissions (or carbon footprint of total

production) are

m′x̂ = f ′ +m′Z. (A.3.4)

Applying some simple algebra on equation (A.3.4) allows us to obtain an expression for m.11

More specifically, let s′ = f ′x̂−1, then

m′ = s′(I−A)−1. (A.3.5)

It is useful to note that from equation (A.3.1) we can also write (by pre-multiplying all terms

by m̂)

m̂x = m̂ZiP + m̂y. (A.3.6)

10For example,

x̂ =


x1 0 0 . . . 0
0 x2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . xP

 .

11Right multiplying (A.3.4) by x̂−1 and replacing A = Zx̂−1 leads to equation (A.3.5).
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From our graphical representation (and equation (A.3.6)), it is straightforward to see that

the matrix that represents the embodied flows of emissions across production activities is

EZ = m̂Z. (A.3.7)

The way to interpret the coefficients of matrix EZ is similar to the way we interpret the

coefficients in matrix Z. That is, the columns indicate the flow of emissions required from

intermediate inputs and the rows the flow of emissions via sales to other sectors and to final

demand.

The vector that represents the embodied flows of emissions in final demand is

ey = m̂y. (A.3.8)

This vector ey is effectively the vector we want to estimate using data from EXIOBASE.

It corresponds to the carbon footprint of the final demand. As Hertwich and Wood (2018)

notes, EZ includes emissions at multiple stages along the supply chain. EZ shows the level

of emissions that each industry has agency over along the full upstream supply chain. Total

gross emissions EZiP + ey count each unique emission multiple times in the supply chain.

Hence the sum of Ez is greater than ey (or f that, by construction, the sum of its elements

equals the sum of the elements of ey).

Note that like with the flow of transactions in Table A.2 where (by construction) to-

tal value added equals total final demand, the total embodied emissions in final demand∑
j mjyj + fhh will equal total direct emissions

∑
i fi + fhh.

To gain more intuition, as in Meng et al. (2018), we can define the matrix Ey as follows

Ey = m̂ŷ. (A.3.9)

This matrix provides estimates of the sector sources of emissions. A row in this matrix shows

the distribution of emissions created from a sector across all sectors. That is, summing across

all columns of this matrix (i.e., along a given row) we recover total direct emissions generated

by the given sector and the matrix shows how each industry emissions are distributed to

final demand. A column in this matrix provides an estimate of the sources of emissions

involved in the production of a given product. That is the sum of a given column equals

the corresponding element in vector ey and decomposes the embodied emissions from the

production of a given industry according to where intermediate inputs are produced.
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A-3.2.1 A 2 Sector (closed-economy) Example

We use the input-output table of a given country with two sectors of production: Sector 1

and Sector 2. For ease of exposition, we assume that this is a closed economy. Table A.3

presents the monetary version of the input-output table.

Table A.3: Example: Input-Output Table (in M.$)

To:
Final Total Gross

Sector 1 Sector 2 Demand Output

F
ro
m
:

Sector 1 15 50 35 100

Sector 2 40 90 70 200
Value Added 45 60 0 105
Total 100 200 105

In this example, x =

[
100

200

]
, y =

[
35

70

]
, and Z =

[
15 50

40 90

]
. Some simple algebra shows

that A =

[
0.15 0.25

0.40 0.45

]
and that L =

[
1.497 0.680

1.088 2.313

]
.

Let’s assume that f ′ = [15 25] (i.e., direct emissions in Sector 1 equal 15 and in Sector

2 equal 25, respectively, both measured in metric tons of CO2-eq). Let’s also assume that

fhh = 0. Representing the matrix flow of emissions for our simple example we obtain

To:
Final Total Gross

Sector 1 Sector 2 Demand Emissions

F
ro
m
:

Sector 1 m1z11 m1z12 m1y1 m1x1

Sector 2 m2z21 m2z22 m2y2 m2x2

Direct Emissions f1 f2 fhh f1 + f2 + fhh
Total m1x1 m2x2 m1y1 +m2y2 + fhh

Solving for m we obtain that

m′ =
[
0.361 0.391

]
.

This implies that there are 0.361 metric tons of CO2-eq embodied per unit of output (or

inputs) of sector 1 and 0.391 metric tons of CO2-eq embodied per unit of output of sector

2. Table A.4 shows the matrix representation of embodied emissions or carbon footprint in

our example.
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Table A.4: Example: Emissions Input-Output Table (in metric tons of CO2-eq)

To:
Final Total Gross

Sector 1 Sector 2 Demand Output
F
ro
m
:

Sector 1 5.41 18.03 12.62 36.05

Sector 2 15.65 35.20 27.38 78.23
Direct Emissions 15.00 25.00 0.00 40.00
Total 36.05 78.23 40.00

where it should be clear that

EZ =

[
5.41 18.03

15.65 35.20

]

and

ey =

[
12.62

27.38

]
.

In addition, we find that Ey =

[
7.857 7.143

4.762 20.238

]
. The sum across rows in Ey equals the

elements in ey. More specifically, 7.857 + 4.762 = 12.62 and 7.143 + 20.238 = 27.38.

A-3.2.2 Obtaining Embodied Emissions in EXIOBASE

Let P denote the number of products, C the number of countries, and K the number of final

demand sectors. We follow the steps that we describe here

1. Obtain the vector of final demand by country/product

� Load Y.txt (a matrix of size (PC ×KC)), sum across final demand sectors and

countries to obtain vector y (a vector of size (PC × 1)). This vector represents

aggregate final demand by country/product.

2. Load the emission multiplier matrix. This corresponds to line “GHG emissions (GWP100)

— Problem oriented approach: baseline (CML, 2001) — GWP100 (IPCC, 2007)” in

M.txt (a vector of size (1× PC)). This corresponds to vector m′.
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� It is also possible to obtain m as follows m′ = s′(I−A)−1 = f ′x̂−1(I−A)−1

where f is the vector of direct emissions, x is the vector of (gross) output, and A

the matrix of requirements in the input output table. See A.1 for directions on

where to find these files.

3. Compute (the vector of) embodied emissions in final demand

ey = m̂y

where m̂ (a matrix of size (PC×PC)) is the diagonalized version of m. We use vector

ey when referring to embodied emissions.

A-3.3 Mapping Emissions at the EXIOBASE Product Level to

NAICS (2017) codes

A final step in linking EXIOBASE data with other data from the US is to go from product

level data in EXIOBASE to industry level data (as dictated by NAICS 2017 codes). This

applies to the vector of direct emissions f and the vector of embodied emissions ey. We use

a concordance file provided by EXIOBASE that links EXIOBASE products to NAICS 2017

codes.12 This file maps each product to one or more NAICS codes. We combine this file

with data on employment to allocate emissions to each NAICS code. In particular,

� Let ẽp denote emissions by product p where p ∈ {1, . . . , P}. In our sample, we have

P = 200. The vector ẽp can be equal to f or ey.

� The concordance table links product p with a particular set of NAICS codes. Let In,p

take value equal to 1 if the concordance table has a positive link between product p

and NAICS code (6-digit level) n where n ∈ {1, . . . , N}.

� We use employment level data from the Bureau of Labor Statistics (BLS). The Quar-

terly Census of Employment and Wages (QCEW) provides information at many levels

of disaggregation. At this stage, we use National data at the 6-digit NAICS code level.13

We obtain Ln which denotes total employment in NAICS code n. Let the employment

weight (i.e., share of total employment) in NAICS code n be sn = Ln/
∑N

n=1 Ln.

� We allocate emissions according to employment shares associated with each product.

More specifically, let ŝp =
N∑

n=1

In,psn and wn,p = (In,psn)/ŝp. Then, total emissions by

12See link to concordance files here (link last accessed 2/4/2022).
13See here for the BLS data.
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NAICS code n equals

en =
P∑

p=1

wn,pẽp.

We implement this allocation method at the 6-digit level but it can be implemented

at any level of aggregation.

A-4 Transition Risk At the Sectoral Level

We follow the finance approach of Reinders, Schoenmaker, and Van Dijk (2023) at the indus-

try level to estimate potential market value losses from climate transition risk at the industry

level. Losses across industries are heterogeneous due to their intrinsic likelihood of default

but more importantly from the variation in their exposure to transition risk (measured using

emissions).

A-4.1 Estimating Asset Value and Asset Volatility at the Industry

Level

The asset market value and asset volatility are estimated using a variation of the Merton

(1974) model proposed by Bharath and Shumway (2008). We follow the notation in Bharath

and Shumway (2008). The Merton model stipulates that the equity value of a firm satisfies

E = VN (d1)− Fe−rTN (d2) (A.4.10)

where E is the market value of the firm’s equity, F is the face value of firm’s debt, r is the

risk-free rate, N (·) is the cumulative standard normal distribution function, d1 is given by

d1 =
ln(V/F ) + (r + 0.5σ2

V )T

σV

√
T

(A.4.11)

and d2 = d1 − σV

√
T . Equation (A.4.10) is the well-known Black-Scholes-Merton equation

that expresses the value of a firm’s equity as a function of the value of the firm.14 It is also

possible to show that under Merton model’s assumptions, the volatility of the firm and its

14A common alternative representation expresses the equity to asset value ratio E/V as a function of the

leverage ratio R = F/V . More specifically E/V = N (d1)−Re−rTN (d2) so d1 =
ln(1/R)+(r+0.5σ2

V )T

σV

√
T

.
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equity are related by

σE =

(
V

E

)
N (d1)σV .

15 (A.4.12)

To estimate asset volatility we first obtain directly from the data (at the industry level) the

market value of equity (E), the volatility of stock returns (σE), the face value of debt (F ),

time to maturity T , and the risk free rate r.

Our estimate corresponds to the so called “Naive” approach in (Bharath and Shumway,

2008). This approach has been found to perform better than the standard Merton model.

The volatility of firms debt is approximated with σnaive
D = 0.05 + 0.25 × σE. This leads to

the total volatility of the firm being

σnaive
V =

(
E

E + F

)
σE +

(
F

E + F

)
(0.05 + 0.25σE). (A.4.13)

Then, with estimates of {E,F, r, σE} and the value of σV from equation (A.4.13), we can

estimate V by solving equation (A.4.10) (i.e., the main difference in the way we implement

this approach is that we replace equation (A.4.12) with (A.4.13)).

A-4.1.1 Calibration Data Moments

We estimate moments at the firm level and use averages at the industry level. Averages

are asset-weighted. While emission data is available at all levels of aggregation (2-digits,

3-digits, 6-digits), due to data limitations we estimate asset values and asset volatility only

at the 2-digits and 3-digit level. There is a significant number of industries that do not meet

our data requirements in Compustat (or that are directly not present in the data).16 Even

at the 3-digit level there is a number of industries with only a few firms with positive assets.

� Market equity volatility (by industry) : σE

– We use daily stock returns. Source: CRSP.17

– Volatility is computed as the annualized percent standard deviation of equity

returns and is estimated from the prior year stock return data for each month (i.e.,

compute yearly stock return, average over month, compute standard deviation

using prior 12 months)

15This expression can also be written as a function of the leverage ratio σE =
(

1
1−R

)
N (d1)σV where we

have used standard accounting rules so V = F + E.
16References to Compustat herein refer to Compustat data from S&P Global Market Intelligence (2019)

via Wharton Research Data Services (WRDS).
17References to CRSP herein refer to data from CRSP US Stock Database (2019) from the Center for

Research in Security Prices, LLC (CRSP) via WRDS.
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– We use 12 years of data that ends in December of 2019. We only include firms

that report stock prices and shares for at least 9 years. We use this 12 year period

to include the variation caused by the global financial crisis in 2008 and 2009.

� Market value of equity (by industry): E

– Source: CRSP

– Market value of each firm’s equity calculated as the product of share price at the

end of the month and the number of shares outstanding

– Data for December 2019. We include information for all firms with positive assets.

� Face value of Debt F

– Source: Compustat (Annual)

– As in Bharath and Shumway (2008) we use debt in current liabilities plus one-half

of long term debt and set T = 1

– Data for December 2019. We include information for all firms with positive assets.

� Risk free rate: r

– Source: FRED. Constant Maturity Treasury, One year maturity.18

– We use the average of 12 years of data that ends in December of 2017 (similar

period as for σE).

� Leverage Ratios

– Our base estimate corresponds to F/V .

When there is no data available at the industry level we use estimates from one level

higher of aggregation. For example, there are no reporting firms for NAICS 55 (Management

of Companies and Enterprises). In order to estimate V and σV for this industry, we take the

average of {σE, E, F} from industries with NAICS codes 51, 52, 53, 54, and 56. If there is

no information for an industry at the 3-digit level we use the values at the 2-digit level.

18Board of Governors of the Federal Reserve System (US), Market Yield on U.S. Treasury Securities at
1-Year Constant Maturity, Quoted on an Investment Basis [DGS1], retrieved from FRED, Federal Reserve
Bank of St. Louis; https://fred.stlouisfed.org/series/DGS1.
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A-4.2 Estimating Climate Transition Losses

As in Reinders, Schoenmaker, and Van Dijk (2023), we will assume an instantaneous shock ξ

(but that takes into account the full transition) on asset values such that immediately after

the shock the asset value of the average firm in industry k adjusts from Vk to V ∗
k where V ∗

k

is given by

V ∗
k = (1− ξk)Vk. (A.4.14)

The parameter ξk is the asset valuation shock that we estimate by linking the discount flow

of losses due to carbon taxes. More specifically, the net present value of carbon taxes in

industry k is

NPVtax,k =
T∑
t=0

(1− rk)
−tγkτt (A.4.15)

where γk denotes the exposure of industry k to the carbon tax τt in period t, and rk is

the discount rate in industry k. We associate γk with the level of emissions (in metric ton

of CO2-eq). The particular application will determine whether we use direct or embodied

emissions. Finally, the fraction of the market value of the firm lost due to carbon taxes is

ξk =
NPVtax,k

Total Asset Valuek
. (A.4.16)

With an estimate of ξk, we use the Merton model estimates (presented in the previous

section) to derive the losses in the market value of debt and equity.Let D denote the market

value of debt. D is given by

Dk = Vk − Ek

= Vk − VkN (d1) + Fke
−rTN (d2)

= Vk(1−N (d1)) + Fke
−rT (1−N (−d2))

= VkN (−d1) + Fke
−rT (1−N (−d2))

= Fke
−rT − Fke

−rTN (−d2) + VkN (−d1),

where we have used the fact that N (x) = (1−N (−x)).

Similarly, the market value of debt after the shock is

D∗
k = Fke

−rT − Fke
−rTN (−d∗2) + V ∗

k N (−d∗1). (A.4.17)

where d∗1 and d∗2 correspond to values of d1 and d2 evaluated using V ∗
k .
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Using these expressions we can obtain the ratio of the value of debt after the shock to

the original value (which equals one minus the losses in the market value of debt) ϑD

ϑD,k =
D∗

k

Dk

=
Fke

−rT − Fke
−rTN (−d∗2) + (1− ξk)VkN (−d∗1)

Fke−rT − Fke−rTN (−d2) + VN (−d1)
(A.4.18)

Using equations (A.4.10) and (A.4.14) we can also derive a similar ratio for the value of

equity

ϑE,k =
E∗

k

Ek

=
(1− ξk)VkN (d∗1)− Fke

−rTN (d∗2)

VN (d1)− Fke−rTN (d2)
. (A.4.19)

We define the ratio of the firm post-shock market value to pre-shock market value as

(i.e., the debt and equity post to pre-value ratios weighted according to the leverage ratio)

ϑk =
Fk

Vk

ϑD,k + (1− Fk

Vk

)ϑE,k. (A.4.20)

We define the market value loss as

λk = 1− ϑk. (A.4.21)

The industry level estimates of climate transition risk losses at the industry level we present

in the paper (see Tables 2 and 3) and from where we derive the regional and bank level losses

correspond to the estimated values of λk. The correlation between λk and ξk is above 0.99.

A-4.2.1 Calibration and Transition Scenarios

We present in this section the calibration of the transition risk scenarios.

� We assume that τt = can take two values $40 and $100 per ton of CO2 for all t.

– The announcement of the tax is unexpected and the change lasts forever.

– The exposure of each sector to the tax corresponds to our estimates of direct

emissions or embodied emissions.

� We assume that the discount factor is equal to 6% as in Reinders, Schoenmaker, and

Van Dijk (2023).

� We do not have information on the asset valuation of non-public firms but emissions

correspond to total emissions at the sector/industry level, so we proceed as follows

– Since we only know the total asset value (by industry) for public firms, we esti-

mate emissions from public firms to then compute ξk. For every industry, we have

A.16



access to output per product from EXIOBASE. We can allocate output per prod-

uct to NAICS as we do with emissions to then compute a measure of emissions

per output (emission intensity) entirely from EXIOBASE. That is, letting yexk
denote total output in industry k from EXIOBASE, we can compute ϕk = ek/y

ex
k

where ek denotes emissions (direct or embodied) in sector k (that is, the vector ek

corresponds to vector f in Section A-3.1 when we use directions and to the vector

ey in Section A-3.2 when we use embodied emissions).

– Then, using the estimated emission intensity by sector, we can compute total

emissions for public firms as follows

êk = ϕky
co
k ,

where ycok denotes total output (sales) from Compustat in industry k. We can ob-

tain Total asset valuek by computing the total market value of firms in Compustat

(denoted by V k) by using the estimated asset market value of the representative

firm in industry k (Vk) times the number of firms in the industry.

ξk =

NPVtax,k︷ ︸︸ ︷
T∑
t=0

(1− rk)
−têkτt

V k︸︷︷︸
Total Asset Valuek

. (A.4.22)

Note that we are implicitly assuming that emissions and sales (or dividends) grow

at the same rate.

� We will index the market value loss λk (see equation (A.4.21)) by the value of the

tax τ ∈ {$40, $100} and the distribution of emissions e ∈ {Direct,Embodied} used to

compute the underlying shock ξk in equation (A.4.22).

A-5 A Simple Production Network Model

We present a simple production network model along the lines of Krivorotov (2022) and

Devulder and Lisack (2020) and focus on carbon taxes on production that propagate to the

rest of the economy via the endogenous input-output linkages.
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A-5.1 Environment

Let k ∈ C = {USA,ROW} and i ∈ {1, . . . , N} the number of industries. Each country

has a representative firm for each industry and firms operate in a competitive market. The

production technology is modeled as a nested Constant Elasticity of Substitution (CES):

yik = Ai

(
µ

1
η

ikℓ
η−1
η

ik + α
1
η

Xik
X

η−1
η

ik

) η
η−1

, (A.5.23)

where Ai is aggregate productivity, ℓik represents labor demand in industry i in country

k, and Xik the demand of intermediate inputs for total production yik. The elasticity of

substitution between labor and other inputs is η and µik corresponds to the labor share in

production for the industry with µik + αXik
= 1. Firms in country k pay wages wk.

Aggregate intermediate inputs are also aggregated using a CES function:

Xik =

∑
l∈C

N∑
j=1

(
αjl
ik

αXik

) 1
σ (

xjl
ik

)σ−1
σ


σ

σ−1

(A.5.24)

where xjl
ik denotes input demand of product from industry j in country l from industry i in

country k. σ captures the elasticity of substitutions across intermediate products and αjl
ik the

factor shares. That is parameters in the production function correspond to share of input j

from country l in the production of good i in country k and satisfy

∑
l∈C

N∑
j=1

αjl
ik = αXik

.

Prices for intermediate inputs from country l in industry j are denoted by pjl. Firms pay

production taxes τik = τeik proportional to their production tax where τ is the corresponding

carbon tax and eik is the emission intensity of industry i in country k.

The representative consumer in country k is endowed with lk units of labor. Consumer

preferences are νk,−k
C1−φ

k −1

1−φ
where Ck denotes aggregate consumption in country k, φ captures

the curvature of the utility function, and νk,−k is a scale parameter. Aggregate consumption

also take a CES form. In particular, aggregate consumption is

Ck =
∑
l∈C

N∑
i=1

(
γ

1
ρ

iklc
ρ−1
ρ

ikl

) ρ
ρ−1

,

where cikl represents the consumption of good in industry i and country l from country k.
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The parameter ρ captures the elasticity of substitution across consumption goods and γikl

the consumption shares with
∑

l∈C
∑N

i=1 γikl = νk,−k, ∀k ∈ C. The representative consumer

receives income from wages wk, government lump-sum transfers, and firm profits.

The government collects taxes and transfers the proceeds to the representative household.

Total transfers are Tk =
∑N

i=1 τeikpikyik.

A-5.2 Equilibrium

The household in country k solves

max
cik,lik

νk,−k

(∑
l∈C
∑N

i=1

(
γ

1
ρ

iklc
ρ−1
ρ

ikl

) ρ
ρ−1

)1−ϕ

− 1

1− ϕ
(A.5.25)

s.t.

∑
l∈C

N∑
i=1

pilcikl = wk

N∑
i=1

lik +
N∑
i=1

Πik + Tk, (A.5.26)

N∑
i=1

lik = lk. (A.5.27)

The solution to this problem implies

cjlk = γjl
k

(
pjl
Pk

)−ρ

Ck. (A.5.28)

The price index is

Pk =

(∑
l∈C

N∑
j=1

γjl
k p

1−ρ
jl

) 1
1−ρ

∀ k. (A.5.29)

A firm in industry i in country k solves

Πik(p, τ) ≡ max
yik,ℓik,x

jl
ik

πik = (1− τeik)pikyik − wkℓik −
∑
l∈C

N∑
j=1

pjlx
jl
ik (A.5.30)

s.t.

yik = Ai

(
µ

1
η

ikℓ
η−1
η

ik + α
1
η

Xik
X

η−1
η

ik

) η
η−1

(A.5.31)
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Xik =

∑
l∈C

N∑
j=1

(
αjl
ik

αXik

) 1
σ (

xjl
ik

)σ−1
σ


σ

σ−1

(A.5.32)

where pik is the price of the good k, l, eik emissions, ℓik is employment, Xik denote aggre-

gate intermediate goods, and xjl
ik intermediate inputs from industry j in country l used for

production in industry i in country k.

The solution to problem (A.5.30) for each sector i in country k implies:

ℓik :
ℓik
yik

= µik

(
pik(1− τeik)

wk

)η

(A.5.33)

Xik :
Xik

yik
= αXik

(
pik(1− τeik)

PXik

)η

(A.5.34)

xjl
ik :

xjl
ik

Xik

=
αjl
ik

αXik

(
PXik

pjl

)σ

(A.5.35)

From cost minimization, obtain price aggregates for the CES basket of intermediates

PXik
=

(∑
l∈C

N∑
j=1

αjl
ik

αXik

p1−σ
jl

) 1
1−σ

Combining (A.5.34) and (A.5.35) we obtain the intermediate input demands

xjl
ik :

xjl
ik

yik
= αjl

ik

(pik(1− τeik))
η

(pjl)
σ P σ−η

Xik
(A.5.36)

In equilibrium, firms make zero profits. This implies that

(1− τeik)pik =
(
µikw

1−η
k + αXik

P 1−η
Xik

) 1
1−η ∀ {i, k}. (A.5.37)

To complete the equilibrium, we also require market clearing

yik =
∑
l∈C

N∑
j=1

xik
jl +

∑
l∈C

cikl , ∀ {i, k} (A.5.38)

Lk =
N∑
i=1

ℓik, ∀ {k}. (A.5.39)
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Aggregate consumption is given by

Ck =

∑
l

(
wlLl +

∑
j τejlyjl

)
∑

l νk,l(Pk/Pl)1/φ
(∑

m

∑
j γ

jm
l P ρ

l p
1−ρ
jm

) (A.5.40)

and government transfers satisfy Tk =
∑N

i=1 τeikpikyik.

A-5.3 Calibration

To provide a comparison with our baseline estimates we use EXIOBASE to calibrate the

parameters of the model. The calibration requires the use of the full Input-Output table.

For this reason, we work at the 2-digit level of disaggregation as mapping the EXIOBASE

industry Input-Output table to 2-digit NAICS is straightforward. Constructing this mapping

at the 3-digit level is not possible so we would have to restrict to EXIOBASE industries or

use different sources for the baseline model and this exercise. We map the 163 industries to

2-digit NAICS codes using the mapping provided by EXIOBASE.

We assume that there are two countries, the US and the rest of the world (ROW). We

set Ai = 1 and, in the baseline, we normalize all prices to 1 (wUSA = pi,USA = pi,ROW = 1).

In the baseline, we set τik = 0.

The parameters αijkl can be calibrated using the ratio of intermediate expenditures to

gross output. That is, from equation (A.5.36) when pik = pjl = 1 and τik = 0

xijkl = αijklyik ⇒ αijkl = xijkl/yik.

The vector of parameters µik can be calibrated using the ratio of value added to gross

output. From the FOC with respect to lik

lik = µikyik

so, in the baseline where all other factors other than labor are intermediate inputs, µik can

be calibrated using the ratio of value added to total output

µik =
lik
yik

(wk)
η =

V Aik

yik
,

where V Aik corresponds to Value Added in industry i in country k. The consumption share

parameters equal to consumption shares (ratio of consumption of good i of country l in

A.21



country k to total consumption in country k)

γikl =
cikl
Ck

.

The preference parameters ρ and φ are set to standard parameters (ρ = 0.90 and φ = 2).

The elasticity of labor and other inputs is set to a value commonly used in the literature

η = 0.80 (e.g. Krivorotov (2022) and Devulder and Lisack (2020)). We evaluate different

values of σ which captures different degrees of intermediate input substitution and thus

implies different effects. We use two extreme values σ ∈ {0.20, 0.90} to represent the case

with a low elasticity of substitution (consistent with our Full Pass-through case) and a case

with a high elasticity of substitution (consistent with the No Pass-Through case). We also

present results for an intermediate value σ = 0.55.

We set eik using emission intensities (computed as the ratio of emissions to gross output).

As described above, in the baseline, we set τ = 0. As in our benchmark model we evaluate

the introduction of a $40 dollar and a $100 dollar carbon tax (per ton of CO2 eq emissions).

A-5.4 Results

We solve the model described in this appendix for τ ∈ {$40, $100} and σ ∈ {0.20, 0.90} and

compare the results with our baseline estimates. Figure A.1 presents the results for the case

when τ = $40 and Figure A.2 for the case when τ = $100. There is significant correlation

across estimates. The correlation between the losses under the No Pass-Through case and

losses when σ = 0.90 equals 0.9626 and the correlation between losses under the Full Pass-

Through case and losses when σ = 0.20 equals 0.8841 (for both levels of τ). The production

network model captures somewhat larger losses for the manufacturing and trade sectors (for

low and high elasticity of substitution) than our baseline model. Estimates in the No Pass

Through case appear to be larger in the Utilities sector (NAICS = 22) in our simple model

than in the endogenous production network model but that difference disappears when we

compare the Full Pass-Through case and the production model with σ = 0.20.
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Figure A.1: Comparison Models: Industry Losses τ =$40 per ton
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Note: Estimates of industry losses (2-digit NAICS) across models. Full Pass-through and No Pass-through
correspond to the results in our baseline model. CES (σ ∈ {0.20, 0.90}) correspond to results for σ ∈
{0.20, 0.90} correspond to output losses derived from the production model presented in this appendix.
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Figure A.2: Comparison Models: Industry Losses τ =$100 per ton
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Note: Estimates of industry losses (2-digit NAICS) across models. Full Pass-through and No Pass-through
correspond to the results in our baseline model. Results for σ ∈ {0.20, 0.90} correspond to output losses
derived from the production model presented in this appendix.

We use the model to understand an intermediate case for the elasticity of substitution

across intermediate inputs. We solve the model for σ = 0.55. Figure A.3 presents the results

for the τ = $100 case. The results show that output losses scale almost linearly with changes

in the elasticity. That is, σ = 0.55 = (0.90+0.20)
2

(i.e., the simple average of the two elasticity

values previously considered) and output losses when σ = 0.55 are approximately the average

of the losses for the case of σ = 0.20 and σ = 0.90. For example, output losses for Utilities

(NAICS #21) when σ = 0.55 equals 15.57% while the average of the σ = 0.20 and σ = 0.90

equals 15.53%.
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Figure A.3: Industry Losses τ =$100 per ton for different values of σ
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Note: Estimates of industry losses (2-digit NAICS). CES (σ ∈ {0.20, 0.55, 0.90}) correspond to results of the
production network model presented in this Appendix for σ ∈ {0.20, 0.55, 0.90}.

A-6 Assessing Transition Risks at Community Banks

We complement the aggregate estimates presented in Table 6 and compute the distribution

of market value losses at the bank level scaled by the loan to equity ratio. That is, we

show the distribution of Λe
i = Λi

Li

Ei
which measures the impact of a carbon tax on the loan

portfolio of a bank scaled by equity. Figure A.4 present the histogram for τ ∈ {$40, $100}.
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Figure A.4: Market Value Losses at the Bank Level (scaled by the loan /equity ratio)
(τ ∈ {$40, $100}
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Note: Histogram of market value losses at the bank level scaled by the loan to equity ratio (Λe
i = Λi

Li

Ei
) for

τ ∈ {$40, $100}. Each panel compares the No Pass-Through case with the Full Pass-Through case.
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