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Abstract

We provide evidence that graduated driver licensing (GDL) laws, originally intended
to improve public safety, impact human capital accumulation. Many teens use auto-
mobiles to access both school and employment. Because school and work decisions
are interrelated, the effects of automobile-specific mobility restrictions are ambiguous.
Restricting teen mobility significantly increases short-run schoolgoing and long-run
educational attainment while reducing teen employment. We develop a multiple dis-
crete choice model that rationalizes unintended consequences and reveals that school
and work are weak complements. Thus, improved educational outcomes reflect de-
creased access to leisure activities rather than reduced labor market access.
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1 Introduction

Teenagers make decisions regarding human capital accumulation that can permanently
alter their lifetime economic trajectories. Of particular import is the decision of whether or
not to complete high school. Additional years of high school education have been shown
to increase adult earnings and lifetime wealth (Angrist and Krueger 1991; Oreopoulos
2007), as well as reduce rates of teen pregnancy and the incidence of adolescent crime
(Black, Devereux, and Salvanes 2008; Anderson 2014; Bell, Costa, and Machin 2022). Pol-
icymakers, educators, and parents invest substantial time and money in efforts to shape
such human capital decisions.

In this paper, we study a policy that was targeted at improving teen car safety and
show that it had unintended and long-lasting effects on human capital accumulation.
Specifically, we investigate graduated driver licensing (GDL) laws, which aim to reduce
automobile accidents by limiting teen access to driving. GDL laws typically increase the
minimum age at which teens can access full-privilege driver’s licenses and create an inter-
mediate licensing level that restricts nighttime driving or the number of passengers who
may ride with a teen driver. We combine quasi-experimental variation in the timing of
GDL laws with cross-state variation in compulsory schooling laws to identify the effects
of teen driving restrictions on high school retention and teen employment.

We first analyze the effects of GDL laws on the high school dropout behavior of 16-
year-olds separately in states where compulsory schooling laws allow dropout at age 16
and in states where compulsory schooling laws prohibit 16-year-olds from dropping out.1

The latter group of states provide a natural placebo test of the GDL effect on educational
attainment. Using microdata from the Current Population Survey’s Annual Social and
Economic Supplement, we estimate event study and differences-in-differences models.2

Event study estimates reveal parallel pre-trends (supporting the identifying assumption
of parallel counterfactual trends) and demonstrate a clear decline in the probability of
16-year-old dropout that coincides with the timing of GDL law adoption. Aggregated
difference-in-differences estimates show that GDL laws decrease the probability of high
school dropout by 1.79pp. Furthermore, these results hold only in the subset of states
where compulsory schooling laws allow for 16-year-old dropout. In the placebo states,

1This age is most impacted by GDL laws. From 1990 to 2017, 40 states switched from allowing 16-year-
old teens to obtain full driver’s licenses to restricting this privilege to older teens.

2We demonstrate that results are robust to bias from negative weights and dynamic effects using several
estimators (Borusyak, Jaravel, and Spiess 2021; Callaway and Sant’Anna 2021; Sun and Abraham 2021).
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we find no evidence that GDL laws shift dropout behavior.
We next estimate an interacted difference-in-differences model on data from treatment

states, placebo states, and states that changed compulsory schooling laws. This interacted
design increases power and allows us to study the effects of GDL laws and their interac-
tion with compulsory schooling laws. Results show that GDL laws decrease the proba-
bility of high school dropout for 16-year-olds by 1.15pp (a 30% reduction at the mean) in
state-years where they are legally able to leave high school. By age 17, treated teens are
still 0.95pp more likely be in school, suggesting that GDL laws encourage teens not only
to postpone dropping out but to eventually complete high school. Indeed, using Ameri-
can Community Survey data, we estimate the interacted model on an adult sample and
show that the effect persists in the long run. Adults aged 22–34 who experienced a GDL
restriction at age 16 and could legally drop out are 0.58pp less likely to eventually obtain
a traditional high school diploma.

That restricting teen mobility improves educational attainment is surprising because
reducing access to an activity should have a weakly negative effect on participation, ce-
teris paribus. However, driving restrictions may also limit access to other teen activities,
such as employment or leisure. The indirect effects on high school completion stemming
from changes in access to alternative activities could dominate the direct effect, depend-
ing on the magnitude of those indirect effects and substitution patterns between activities.
Thus, the sign of the total impact of mobility restrictions on critical human capital accu-
mulation during formative teen years is ex ante ambiguous. The positive estimate on
high school retention and completion suggests that these indirect margins are important
to the underlying teen decision-making process.3

To further investigate links with alternative activities, we next apply the interacted
difference-in-differences design to teen employment outcomes. GDL laws reduce 16-year-
old labor force participation by an estimated 1.76pp (a 7.5% reduction at the mean) only in
state-years where those teens are unrestricted by compulsory schooling laws. This result
strongly suggests an indirect channel linking teens’ decisions regarding school and work.
However, these results cannot distinguish how much of the reduction in teen labor force
activity reflects the direct effect of restricting teens’ ability to commute to jobs or indirect
effects caused by changes in schoolgoing or leisure activities.

3The strictest variant of GDL law, which completely disallows unsupervised 16-year-old driving, does
not cause a corresponding decline in the probability of high school dropout. This suggests that limiting
teen driving may improve educational outcomes by reducing access to alternative activities (such as leisure
or employment), but these positive effects diminish if teen access to driving is completely removed.
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To distinguish these channels, we develop and estimate a multiple discrete choice
model. The model rationalizes the reduced-form findings by decomposing total effects
into direct effects of GDL laws and indirect effects due to activities being substitutes or
complements. In the model, teens may participate in school, work, both activities, or
neither activity, and GDL laws may differentially impact each activity. The model is iden-
tified using exclusion restrictions based on compulsory schooling laws and labor market
conditions. Estimates reveal that employment is not a strong substitute for high school
attendance—in fact, they are weak complements. Counterfactual simulations indicate
that improved high school retention from GDL laws is thus not due to reductions in la-
bor market access, but instead reflects decreased access to leisure activities.4 In contrast,
the reduction in teen labor force participation due to GDL laws is entirely attributable to
the direct effect of reduced work access. Differentiating direct and indirect channels not
only clarifies and enriches our results, but is also broadly useful in designing future poli-
cies to better target teen behavior. Results suggest that policies limiting teen mobility can
preserve the benefit to educational attainment while avoiding negative teen employment
effects by targeting access to non-work, non-school activities.

This paper offers several contributions. A small but growing literature seeks to under-
stand the consequences of teen mobility and restrictions thereto. Teenage driving is risky,
and mortality rates increase after the onset of driving age (Huh and Reif 2021). Several
studies find that GDL laws and related policies substantially reduce the injury and fatal-
ity risk teens face by limiting driving (Dee, Grabowski, and Morrisey 2005; Shults, Olsen,
and Williams 2015; Moore and Morris 2024), though GDL laws do not improve driving
safety in the long run (Karaca-Mandic and Ridgeway 2010; Gilpin 2019). Related research
examines the effects of these policies on non-driving outcomes. Deza and Litwok (2016)
and Deza (2019) provide evidence that GDL laws reduce teen criminal activity and preg-
nancy. Argys, Mroz, and Pitts (2019) show that GDL laws explain about half of the drop
in teen labor force participation in the U.S. since 1995, which is consistent with our em-
ployment findings despite a different research design and data. Kennedy (2020) shows
that mobility restrictions tied to school performance (in the form of “No Pass, No Drive”
laws) do not impact high school graduation, but do delay the decision to drop out. Our
findings complement this literature. We: (1) show that GDL laws impact an important
teen outcome with long-lived consequences—high school completion; (2) reveal a key in-

4This finding complements related literature showing that GDL laws reduce the likelihood of risky be-
haviors by teens (Deza and Litwok 2016; Deza 2019).
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teraction with compulsory schooling policies; and (3) provide a structural framework to
interpret effects.

As such, our paper offers insights into the determinants of educational attainment
and high school dropout. A much studied policy intended to impact these outcomes
is to legally compel schooling (Angrist and Krueger 1991; Acemoglu and Angrist 2000;
Lleras-Muney 2002; Oreopoulos 2009). In summarizing the effects of compulsory school-
ing on educational attainment, Oreopoulos (2007) concludes, “It is very difficult to rec-
oncile substantial returns to compulsory schooling with an investment model of school
attainment. The results are more consistent with the possibility that many adolescents
ignore or heavily discount future consequences when deciding to drop out of school.”
Our study interfaces with this sentiment by suggesting that the interaction of GDL and
compulsory schooling laws shifts access to activities that may distract teens from com-
pleting high school. This augments the literature linking non-education policies to high
school dropout behavior (Cohodes et al. 2016; Lovenheim, Reback, and Wedenoja 2016;
Miller and Wherry 2018; Groves 2020) and connecting leisure activities, and especially
risky behaviors, to dropout (Bray et al. 2000; Koch and McGeary 2005; Crispin 2017).5

We also provide new insights into teen employment decisions. While our reduced-
form estimates show that GDL laws reduce teen labor force participation (as in Argys,
Mroz, and Pitts 2019), we also provide insight into how education and labor responses to
GDL laws are interrelated. Structural estimates reveal that GDL policies directly limit ac-
cess to employment but also show that school and work are complements. Thus, it is not
reduced work access that increases high school retention. Our findings also complement
evidence that mobility restrictions impact the labor supply of non-teen groups (Black,
Kolesnikova, and Taylor 2014; Amuedo-Dorantes, Arenas-Arroyo, and Sevilla 2020) and
updates the literature linking teen education and employment (e.g., Eckstein and Wolpin
1999).6

Finally, we contribute a structural framework for policy analysis that incorporates the
interacted difference-in-differences design. This model distinguishes mechanisms, sepa-
rating direct from indirect (substitution) effects. We show how the model can be adapted
to contexts where there is no “outside option” unaffected by the policy of interest by us-

5Anderson (2014) and Bell, Costa, and Machin (2016) show that the inverse channel, from educational
policies to risky behaviors, is also present.

6The evidence on the impact of working while in high school largely shows that part-time employment
while in school is not detrimental to academic success (Montmarquette, Viennot-Briot, and Dagenais 2007;
Dustmann and van Soest 2008).
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ing additional restrictions to set identify a normalizing parameter. The model retains a
primary focus on identifying policy parameters while adding structure to gain insight
and interpretation; relatively few papers combine quasi-experimental research design
with discrete choice models for policy evaluation (an exception is Li 2018).7 Moreover,
the model provides an alternative to, and ultimately reinforces, the design-based (i.e.,
reduced-form) approach. These two methods are complementary.

We describe the background and context for our study and detail data sources in Sec-
tion 2. In Section 3, we describe the research designs. Section 4 presents the main re-
sults on education outcomes as well as an array of robustness checks employing alternate
model specifications, alternate estimators, and alternate datasets.8 We also show that ef-
fects are long-lived and explore heterogeneity across subgroups and by GDL intensity.
In Section 5, we investigate effects on teen employment outcomes. Section 6 unites ed-
ucation and employment decisions within a structural model to differentiate the various
effects of GDL laws on teen activities. Section 7 concludes.

2 Context and Data

High teen driving fatality risk in the United States in the 1980s led to the implementation
of a number of policies targeted at improving both car safety and limiting teen driving.
Graduated driver licensing laws are one such policy that began to be widely adopted
starting in the mid 1990s. GDL laws often limit full-privilege licenses to older (>16) teens
and create an intermediate licensing level that restricts nighttime driving and the num-
ber of passengers who may ride with a teen driver. GDL laws have reduced teen traffic
fatalities by over 50% in both the U.S. and Australia (Dee, Grabowski, and Morrisey 2005;
Shults, Olsen, and Williams 2015; Moore and Morris 2024). GDL laws decrease fatalities
primarily by decreasing teen driving rather than improving the quality of teen driving,
implying restricted mobility (Karaca-Mandic and Ridgeway 2010; Gilpin 2019).

We develop a database of pertinent state-level GDL laws in the 50 states and DC
from several sources, including the Federal Highway Administration’s (FHWA) High-
way Statistics and the Insurance Institute for Highway Safety (IIHS), covering the years

7An extensive literature applies dynamic structural modeling to human capital accumulation. Given
our repeated cross-sectional data, our approach instead grows out of product choice models from industrial
organization (e.g., Berry, Levinsohn, and Pakes 1995; Goolsbee and Petrin 2004; Gentzkow 2007).

8We support our main findings using additional school-district level data from the National Center for
Education Statistics’ Common Core of Data.
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1990 to 2017.9 Figure 1a shows counts of the number of states with various types of GDL
laws over time.10 Prior to 1995, fewer than ten states limited full-privilege licenses to
those older than 16 or had nighttime driving restrictions on teens. By 2010, forty-seven
states had increased restrictions on teenage driving. Much of the adoption of GDL laws
occurred between 1996 and 2003.

To verify that GDL laws had a binding effect on teen automobile use, we link the
GDL law dataset to information from the U.S. Department of Transportation’s Fatality
Analysis Reporting System (FARS). We use the rate of fatal car accidents involving a teen
driver as a proxy for the prevalence of teen driving and estimate the effect of increasing
the minimum full-privilege driving license age on teen accident rates. We find that the
GDL driving restrictions reduce the rate of fatal car accidents for 16-year-olds by 27%.
This result suggests that GDL laws significantly restrict teen driving. We discuss this
verification exercise in detail in Appendix A.

Our research design combines variation in GDL laws with variation in state-specific
compulsory schooling (CS) laws. Specifically, we use the mandated school-leaving age
(the minimum age at which a teen is legally allowed to drop out of school) to create a
“placebo” group of teens who are exposed to GDL laws but are restricted from dropping
out of high school. We extend school-leaving age data from Anderson (2014) (which cov-
ers 1980–2008) up to 2017. For 2009–2011, 2013–2015, and 2017, we draw on the National
Center for Education Statistics’ (NCES) State Education Reforms tables and fill in the in-
tervening years for states with no changes. For states with a change in the minimum
school-leaving age, we verified the timing of the change in legal databases.11 Figure 1b
shows counts of the number of states with different minimum school-leaving ages from
1990 to 2017. Over this time period 25 states changed their minimum school-leaving age,
in most cases from 16 to either 17 or 18.

We link the data on each state’s GDL and CS laws to individual-level data on schooling
and work decisions in the Current Population Survey (CPS) Annual Social and Economic
Supplement (ASEC) (Flood et al. 2023).12 The CPS ASEC data are from an annual survey
of U.S. households conducted in March of each year and provide person-level information

9IIHS data begins coverage in 1995. We use FHWA data for the years before 1995 and to rectify uncer-
tainty. The GDL data are based on that used in Severen and Van Benthem (2022).

10Appendix Figure B.1 shows the same variation as in Figure 1 weighted by state populations (linearly
interpolated between census years). Appendix Table B.1 details the years in which GDL laws are adopted.

11A precise accounting of these changes is in the replication package and available from the authors.
12When linking these datasets, we assign a GDL law to a year if that law was in effect by December of

that year. In Appendix A, we verify that this approach is reasonable.
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Figure 1: Teen Driving Restrictions & Minimum School-Leaving Age, 1990–2017

(a) Graduated Driver Licensing Adoption

(b) Minimum Legal School-Leaving Age

on a variety of demographics, household controls, and teen outcomes. Importantly, the
survey asks all participants aged 16–24 if they were enrolled in high school or college
during the previous week, and, if so, whether they were enrolled full- or part-time.13 We

13Students on holiday or seasonal vacation at the time of the survey were instructed to answer “yes” to
this question.
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Table 1: Summary Statistics on Individuals Aged 16

Mean Std. Dev Min Max

Individual Characteristics:
Female 0.49 0.50 0 1
White 0.78 0.42 0 1
Black 0.15 0.36 0 1
Asian 0.02 0.15 0 1
Other Race 0.05 0.22 0 1
Hispanic 0.16 0.37 0 1
Mother Edu ≥ B.A. 0.24 0.43 0 1
Father In Household 0.76 0.43 0 1
Receives SNAP* Benefits 0.12 0.33 0 1

Outcome Variables:
NotInSchool = 1 0.038 0.19 0 1
InLaborForce = 1 0.233 0.42 0 1

Treatment Variables:
Minimum Unrestricted Driving Age 16.9 0.72 15 18
Minimum School-Leaving Age 16.9 0.91 16 18

State-level Characteristics:
“No Pass, No Drive” Law 0.19 0.39 0.00 1.00
3-Month Unemployment Rate 6.45 1.98 2.50 14.2
Log Minimum Wage 1.91 0.11 1.71 2.41

* SNAP = Supplemental Nutrition Assistance Program
Source: CPS ASEC Data on individuals aged 16 linked to GDL and CS
data, BLS unemployment data, and state minimum wage data. This data
includes 75,196 individual observations.

use these responses to construct a single indicator variable, NotInSchooli, which equals 1
if individual i is not enrolled in any amount of either high school or college in the week
preceding the survey. We use this measure as a proxy for high school dropout, although
it incorporates measurement error from those teens who have already completed a high
school degree and are not enrolled in college. CPS ASEC participants are also surveyed
on labor force participation and employment status in the preceding week.

To construct the primary estimation sample, we limit the linked GDL law, CS law,
and CPS data to individuals aged 16 at the time of the ASEC survey. This serves dual
purposes: (1) our measure of high school dropout, NotInSchooli, should incorporate less
noise for this age group as they are unlikely to have completed high school; (2) this is the
age most impacted by GDL laws. From 1990 to 2017, 40 states switched from allowing
16-year-olds to obtain full-privilege licenses to restricting this privilege to older teens.14

14In contrast, the GDL laws created binding age limits for 17-year-old drivers in only 14 states.
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We draw data from a variety of other sources. To control for local economic conditions,
we include data from the Bureau of Labor Statistics (BLS) on the monthly non-seasonally
adjusted unemployment rates by state and data from the Federal Reserve Economic Data
(FRED) on state minimum wages. We use the BLS data to construct a state-specific un-
employment rate in each year.15 From FRED, we take the maximum of the state and
federal minimum wage in each year and inflation-adjust to reflect the binding real min-
imum wage in each state-year (U.S. Department of Labor). We also use the American
Community Survey (ACS) (Ruggles et al. 2024) from 2008 to 2019 for U.S.-born respon-
dents aged 22 to 34 to study longer-run outcomes. Finally, we use Table 1 of Kennedy
(2020) to create controls reflecting enrollment-based “No Pass, No Drive” (NPND) laws
in each state-year. These laws prohibit teens who drop out of high school from obtaining
a driver’s license.

Table 1 reports summary statistics for the final linked estimation sample of 75,196
individuals at age 16. In this sample, 3.8% report not attending any school in the week
preceding the survey. This corresponds closely to the national dropout rates reported by
the NCES for the 10th and 11th grades: 3.5% and 4.1%, respectively. The share of 16-
year-olds not in school is 3.9% in state-years where they are permitted to drop out and is
similar (3.7%) in state-years where they are not (see Appendix Table B.2).

3 Empirical Strategy

Because the effect of mobility restrictions on teen dropout behavior is ex ante ambiguous,
we first discuss the channels through which GDL laws might impact teen educational
attainment. The introduction of a GDL law restricting teen access to driving may have
a direct effect on dropout decisions if the restriction hinders teens’ ability to commute to
school. Especially for low-income households or teens in rural areas with little access
to alternative transportation, the direct effect may increase high school dropout rates.16

However, the mobility restrictions imposed by GDL laws could impact a teen’s dropout
decision indirectly by limiting access to labor and leisure activities. Previous studies in-

15We use a three-month average of unemployment rates centered on January. For example, the 3-month
rate for 1995 is the average of the monthly unemployment rates from December 1994 to February 1995.

16The availability of busing services may also impact school access. While our data do not include travel
mode, more than 77% of students aged 16–18 used a car to get to school in 2001 (National Household Travel
Survey Travel to School: The Distance Factor 2008). The share of students in grades 9–12 who traveled by
school bus increased from 19% to 26% between 1995 and 2009 (McDonald et al. 2011), before falling again
to 21% by 2017 (Lidbe et al. 2020).
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dicate that driving restrictions decrease teen work and risky teen behavior (Deza and
Litwok 2016; Deza 2019; Argys, Mroz, and Pitts 2019; Huh and Reif 2021).

The signs on the indirect effects depend on whether schooling and employment (or
schooling and leisure) are complements or substitutes for teens. If work (or leisure) is
seen as a substitute for schooling, then reducing access to employment decreases high
school dropout. However, if a teen views the two activities as complements, then the
indirect effect has the reverse sign and could increase high school dropout. Thus, the
total (net) effect of GDL laws on high school dropout rates is positive in the absence of
indirect effects, but may be either positive or negative if indirect effects are significant.

Our discussion thus far has assumed that teens can easily drop out of high school
in response to mobility restrictions. This assumption likely fails in states that impose
compulsory schooling (CS) laws making it illegal for younger teens to drop out. CS laws
thus create a natural placebo test in state-years where the school-leaving age is greater
than the minimum age needed for an unrestricted driver’s license. To the extent that
compulsory schooling laws are well enforced, these policies effectively shut down the
effects of the GDL laws on dropout behavior.

We first analyze the effects of GDL laws on 16-year-olds separately in states where
compulsory schooling laws allowed these teens to drop out (during the sample win-
dow) and states where compulsory schooling laws restricted dropout for 16-year-olds.
These models feature clean variation that avoids contamination from changing compul-
sory schooling laws, but drop a substantial fraction of the data. Then we use all the
available data to estimate an interacted difference-in-differences model.

3.1 Event Study Analyses

We first provide visual evidence using an event study model that provides an indirect
test of identifying assumptions. We estimate the following linear probability model on
the sample of 16-year-olds:

NotInSchoolist =
−2∑

k=−10

θkGDLs,t+k +
10∑
k=0

θkGDLs,t+k +X ′
iν + Z ′

stµ+Ds +Dt + ϵist, (1)

where each GDLs,t+k is an indicator for k years from the adoption of a GDL law. Adop-
tion of a GDL law in state s in year t occurs when the minimum unrestricted driving age is

11



>16 (i.e., 16-year-olds experience mobility restrictions).17 The omitted category is k = −1.
We restrict the effect of GDL laws on cohorts who turned 16 more than ten years before
or ten years after the law went into effect to be constant so that θ−10 and θ10 represent
the average effect ten or more years prior to or after the GDL adoption, respectively. The
vector Xi includes individual-level controls: gender, race/ethnicity indicators, mother’s
education, presence of father in household, and receipt of SNAP benefits. The variable
Zst includes controls for the state’s minimum wage, unemployment rate, and presence of
a “No Pass, No Drive” (NPND) law.18 This specification also includes state fixed effects
to control for time-invariant confounding factors (such as persistent differences in school
quality or returns to education across states) and year fixed effects to control for aggre-
gate fluctuations (such as changes in national schooling laws).19 Standard errors permit
clustering at the state level.

We estimate Equation 1 separately on two sub-samples of the data. First, we create
a “treatment” group of states where the minimum school-leaving age is 16 or younger
throughout the entire sample window. The θk coefficients for this sub-sample of 16-year-
olds will identify the effect of imposing mobility restrictions on dropout behavior in states
where 16-year-olds are legally permitted to drop out of high school.

Second, we create a “placebo” group of states where the minimum school-leaving age
is older than 16 throughout the entire sample window. The θk coefficients for this sub-
sample identify a placebo effect of imposing mobility restrictions on dropout behavior
in states where 16-year-olds cannot legally drop out. However, if CS laws are not strict,
GDL laws may still impact high school dropouts (i.e., θk ̸= 0). In this case, an effect is
observable only if students experience direct or indirect effects of the mobility restric-
tion that are large enough to incentivize disregarding CS statutes. For example, in rural
areas where school attendance zones are expansive and school buses often require long
commutes (Howley, Howley, and Shamblen 2001), the direct effect of GDL laws could
be large enough to increase high school dropout rates, even in states with binding com-
pulsory schooling laws. Note that to create the two sub-samples (of “treatment” and
“placebo” states), we restrict the data to those states that did not change their minimum

17For the purposes of this variable, we consider as restrictions: limits of the time of day that one can
drive, limits on the number of passengers, or limits on destinations. We do not consider a requirement of
parental approval a restriction.

18We construct an indicator for whether state s has enacted an enrollment-based NPND in or prior to
year t that does not include exemptions for: hardship, employment, GED, or parental permission.

19All specifications are estimated using CPS ASEC person-level weights.
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school-leaving age during the time period under study.20

Because dynamic two-way fixed effects estimators can be subject to negative weight-
ing issues (Sun and Abraham 2021), we estimate Equation 1 using both an OLS estimator
as well as the imputation estimator of Borusyak, Jaravel, and Spiess (2021). We show in
Appendix C that the results are also robust to using the estimators proposed in Callaway
and Sant’Anna (2021) and Sun and Abraham (2021).

3.2 Difference-in-Differences Analyses

We then employ a difference-in-differences approach and estimate a model similar to
Equation 1 that aggregates pre- and post-treatment years. This strategy provides more
power to detect average effects. We estimate the following separately for the “treatment”
and “placebo” state sub-samples:

NotInSchoolist = βGDLst +X ′
iν + Z ′

stµ+Ds +Dt + ϵist, (2)

where GDLst is an indicator equal to 1 if the minimum unrestricted driving age is greater
than 16. All other variables are defined as in Equation 1. We estimate this model us-
ing probit maximum likelihood, though results are very similar for the equivalent linear
probability model (see Appendix Table B.3).21 We also estimate Equation 2 using the im-
putation approach of Borusyak, Jaravel, and Spiess (2021) (hereafter denoted BJS). It is the
most efficient linear unbiased estimator given pre-specified weighted sums of treatment
effects under parallel trends and homoskedasticity, retains attractive efficiency proper-
ties under heteroskedasticity, and recovers a well-defined average treatment effect on the
treated (ATT) even under arbitrary treatment-effect heterogeneity and dynamism.22

20From 1990 to 2017, about half of states increased their minimum school-leaving age (see Figure 1b).
21Given that only 3.8% of 16-year-olds are not in school (Table 1), a probit specification avoids predicting

probabilities outside the unit interval.
22In our setting, BJS is computationally more robust than estimators that individually estimate and aggre-

gate all possible 2x2 difference-in-differences designs (such as Callaway and Sant’Anna 2021). Our repeated
cross-sectional data include many such 2x2 designs that are based on a small number of observations, and
the resulting estimates are therefore noisy. The imputation approach uses more information to estimate
st-specific treatments (under a maintained assumption of parallel trends), and so is more efficient.
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3.3 Interacted Difference-in-Differences

Our preferred model is an interacted difference-in-differences approach that allows us to
combine the two sub-samples of “treatment” states and “placebo” states along with those
states that change their minimum school-leaving age during the observation window.
Because roughly 40% of the data are in states that change compulsory schooling laws,
this approach substantially increases power.

We estimate the following interacted difference-in-differences specification for the full
sample of 16-year-olds:

NotInSchoolist = β1GDLst + β2CSst + β3GDLst ∗ CSst

+X ′
iν + Z ′

stµ+Ds +Dt + ϵist, (3)

where CSst is an indicator that equals one if the minimum school-leaving age is ≤ 16 (i.e.,
16-year-olds are legally permitted to drop out of school). All other variables are defined
as in Equation 1 and Equation 2.

Identifying the interaction effect between GDL laws and CS laws requires that: (i) it
is possible to credibly identify the effects of each policy individually on the same set of
teens; and (ii) that the two policies are adopted by states independently of one another
(Johnson and Jackson 2019). This requires that teens who are exposed to both a GDL
restriction and a binding minimum dropout age are comparable to teens who are only
exposed to one or the other restriction. We detail the timing of both policy changes in
each state in Appendix Table B.1.23 It is clear that states almost never change the two
policies simultaneously. A regression of GDLst on CSst, controlling for covariates, yields
a statistically insignificant point estimate of -0.0062 (p-value = 0.885).

Given that changes in these two policies appear to be independent, we can interpret
the coefficients in Equation 3 as follows. The coefficient β1 identifies the placebo effect
of imposing mobility restrictions in states where 16-year-olds cannot legally drop out.
(This coefficient is comparable to β from Equation 2 estimated on the placebo state sub-
sample.) The coefficient β2 captures the impact of more lenient compulsory schooling
laws (minimum school-leaving age below 17) in the absence of GDL laws. We expect
this coefficient to be positive and significant. Finally, β3 reflects the differential effect of

23We also depict the variation in both policies and the interaction between them in Appendix Figure C.2.
Many states adopt GDL laws without restricting dropping out between 1995 and 2001, but the number
of states with this interacted treatment begins to decline slowly around 2010 as states begin expanding
compulsory schooling laws.

14



increasing driving restrictions for teens who are legally able to drop out relative to teens
who cannot. Of particular interest is the sum β1 + β3, which represents the total effect of
GDL laws on those teens who are legally permitted to drop out of school. (This sum is
comparable to β from Equation 2 estimated on the treatment state sub-sample.)

A benefit of this interacted design is that it uses the full sample of 16-year-olds in
all state-year combinations in the data. The drawback is that there is not a general esti-
mator for this model (which features repeated cross-sectional data with interacted treat-
ments that turn on and off) that is fully robust to treatment effect heterogeneity and dy-
namism.24 We therefore estimate the interacted difference-in-differences model using a
probit maximum likelihood estimator. However, we recast this model to fit the BJS im-
putation method (we discuss this strategy in detail in Appendix C), providing further
evidence that our results are not sensitive to the choice of estimator.

4 Education Results

4.1 Event Study Results

Figure 2 plots estimates and confidence intervals of the event study coefficients, θk (Equa-
tion 1). Panel (a) displays estimates for states where dropout is legally permitted for 16-
year-olds (treatment states). In panel (a), though post-treatment point estimates are not
statistically significant in every year, there is a clear decline in the probability of 16-year-
old dropout that coincides with GDL law adoption. Increasing the minimum driving age
in states where 16-year-olds can legally drop out reduces the probability that these teens
are no longer in school by between 0.4 and 3.7pp. These negative point estimates reveal
that teens respond to reduced access to driving by staying in school longer. The negative
sign of these estimates also indicates that any direct effect of GDL laws on high school
attendance (by decreasing access to school) is more than completely offset by the indirect
effects of GDL laws operating through reduced access to other activities (labor, leisure, or
both).

Panel (b) displays estimates for states where 16-year-olds are legally required to stay
in school (placebo states). These estimates suggest that there is no impact of GDL laws on
dropout behavior, confirming the placebo test. Importantly, both panels of Figure 2 sug-

24Note, however, that de Chaisemartin and D’Haultfœuille (2023) make progress toward interacted de-
signs, targeting difference-in-differences designs with multiple treatments.
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Figure 2: The Effect of Minimum Unrestricted Driving Age on 16-Year-Old Dropout

(a) States with school-leaving age ≤ 16 (“Treatment”)
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(b) States with school-leaving age > 16 (“Placebo”)
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Coefficient estimates of θk and 95% confidence intervals in dashed lines from a linear probability model
using CPS ASEC data from 1990–2017. Controls include: gender; race/ethnicity indicators; mother’s
education; presence of father in household; receipt of SNAP benefits; state unemployment rate; NPND
laws; state log real effective minimum wage, state fixed effects, and year fixed effects. Standard errors are
clustered at the state level.
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gest parallel pre-trends and a lack of anticipation effects, supporting the identifying as-
sumption of parallel counterfactual trends. Furthermore, the imputation-based estimates
are very similar to the OLS estimates, indicating minimal contamination from treatment
effect heterogeneity. This is supported through additional testing using the estimators
proposed in Callaway and Sant’Anna (2021) and Sun and Abraham (2021) (see Figure C.1
in Appendix C). All four estimators provide strikingly similar results, especially for the
effects of GDL laws in the treatment states. The individual point estimates for the placebo
states are somewhat noisier, but mostly suggest no substantial negative effect.

4.2 Difference-in-Differences Results

Table 2 reports the difference-in-differences estimates corresponding to Equation 2. Odd-
numbered columns show the average marginal effects from a probit estimator, while the
even-numbered columns show estimates using the BJS imputation method.

Table 2: The Effect of Minimum Unrestricted Driving Age on 16-Year-Old Dropout, Treat-
ment and Placebo Difference-in-Differences

Not In School = 1

Treatment States Placebo States

(1) (2) (3) (4) (5) (6) (7) (8)

Min. Unres. Driving Age >16 (β) -0.0175*** -0.0192** -0.0179*** -0.0160 0.0087 -0.0016 0.0082 -0.0007
(0.0059) (0.0078) (0.0069) (0.0101) (0.0074) (0.0055) (0.0064) (0.0065)

Estimator Probit Imputation Probit Imputation Probit Imputation Probit Imputation

Controls - - Y Y - - Y Y

School-Leaving Age Always Always Always Always Always Always Always Always
≤16 ≤16 ≤16 ≤16 >16 >16 >16 >16

Obs 22,269 15,035 22,269 15,035 24,298 13,325 24,298 13,325

Estimates using CPS ASEC data from 1990–2017 limited to states that never changed school-leaving age. All specifications include
state and year fixed effects. Controls in columns (3)–(4) and (7)–(8) include: gender; race/ethnicity indicators; mother’s education;
presence of father in household; receipt of SNAP benefits; NPND laws; state unemployment rate; and state log real effective minimum
wage. Columns (1)–(4) further restrict the sample to states where the school-leaving age is always ≤16, while columns (5)–(8) include
only states where the school-leaving age is always >16. Standard errors are clustered at the state level. * p<0.10, ** p<0.05, *** p<0.01

In columns (1)–(4), estimates of β from Equation 2 point to a negative effect of GDL
laws on dropout behavior for 16-year-olds in states where dropout is legally permitted. In
columns (1)–(2), we estimate the model excluding control variables (Xi and Zst). The pro-
bit estimate from the model with all covariates included (column 3) reveals that increasing
the minimum driving age in states where 16-year-olds can legally drop out reduces the
probability that these teens are no longer in school by approximately 1.79pp, a 45.6% re-
duction from the mean. This is consistent with the average magnitude of the estimates
shown in Figure 2.
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The imputation point estimates are very similar in magnitude, but use a smaller sam-
ple and are thus somewhat noisier. In the model with all covariates, this estimate (-1.60pp)
is therefore not statistically significant at traditional thresholds (a p-value of 0.112). Sam-
ples sizes are smaller in columns (2) and (4) because the imputation method drops “always-
treated” states (those that adopted a GDL law before 1990). Note that the samples in all
columns of Table 2 are also limited to those 33 states that did not change their minimum
school-leaving age between 1990 and 2017.

Estimates in columns (5)–(8) show the results of the placebo test. These estimates are
quantitatively small and statistically insignificant in all four specifications, indicating that
there is no discernible effect of GDL laws on 16-year-old dropout behavior in states where
the minimum school-leaving age is binding.

4.3 Interacted Difference-in-Differences Results

The interacted difference-in-differences design expands the sample to include observa-
tions in all state-years. Table 3 presents the average marginal effects corresponding to
each coefficient in Equation 3.25 In column (1), we estimate the model excluding control
variables (Xi and Zst). Column (2) presents our preferred specification, which includes
all covariates. These estimates demonstrate that results are not sensitive to or driven by
the inclusion of covariates. Estimates of β1 (our placebo test) are very small and are statis-
tically insignificant, further confirming that there is no effect of GDL laws on 16-year-old
dropout behavior in states where dropout is prohibited.

As expected, estimates of β2 are statistically significant, indicating that compulsory
schooling laws are generally effective (i.e. the probability of a 16-year-old leaving high
school is significantly larger in states where dropout is legally permitted at that age).
Moreover, these estimates are quantitatively similar to those in previous studies that an-
alyze the impacts of compulsory schooling laws (Anderson 2014; Oreopoulos 2009).26 As
we use more recent data than those papers, this provides some evidence that compulsory

25Results estimated using a linear probability model are shown in Appendix Table B.3 and are qualita-
tively and quantitatively similar.

26Oreopoulos (2009) finds that a school-leaving age below 16 increases the fraction of 20- to 24-year-olds
reporting less education than a high school degree by 1.3pp. Our estimate in Table 3 is slightly larger
(1.9pp), however we measure dropout in a younger population, at age 16. In Section 4.5, we investigate
longer-run effects of GDL and CS laws and find a smaller effect (1.1pp) of school-leaving age on the proba-
bility of having less than a HS diploma at age 22-34. Our estimates are also bounded on the upper end by
Anderson (2014), who finds that a school-leaving age of 18 or older reduced high school dropout rates by
2pp.
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schooling laws continue to be impactful for educational attainment.27

Table 3: The Effect of Minimum Unrestricted Driving Age on 16-Year-Old Dropout, Inter-
acted Difference-in-Differences

Not In School = 1

(1) (2) (3) (4) (5) (6) (7)

Min. Unres. Driving Age >16 (β1) 0.0022 0.0014 0.0014 0.0033
(0.0043) (0.0040) (0.0042) (0.0051)

School-Leaving Age ≤ 16 (β2) 0.0200*** 0.0191***
(0.0049) (0.0049)

Min. Unres. Driving Age >16 -0.0132*** -0.0129** -0.0123** -0.0200***
× School-Leaving Age ≤ 16 (β3) (0.0050) (0.0052) (0.0058) (0.0077)

Effect of GDL if -0.0110** -0.0115** -0.0109** -0.0167* -0.0109** -0.0111** -0.0113**
School-Leaving Age ≤ 16 (β1 + β3) (0.0051) (0.0052) (0.0054) (0.0086) (0.0047) (0.0045) (0.0046)

Estimator Probit Probit Probit Probit Imputation Imputation Imputation

Fixed in Never
School-Leaving Age As Observed Yr. of GDL Switchers As Observed

Change Only

Controls - Y Y Y - Y Y
Exclude Always Treated - - - - Y Y Y
Exclude Never Treated - - - - - - Y
Obs 75,196 75,196 75,196 46,567 50,729 50,729 46,853

Average marginal effects from probit regression (columns 1–4) and from the imputation estimator of Borusyak, Jaravel, and
Spiess (2021) (columns 5–7) using CPS ASEC data from 1990–2017. All specifications include state and year fixed effects. Controls
in columns (2)–(4) and (6)–(7) are: gender; race/ethnicity indicators; mother’s education; presence of father in household; receipt
of SNAP benefits; NPND laws; state unemployment rate; and state log real effective minimum wage. Column (3) also includes
indicators for the state minimum legal dropout age. Column (3) fixes school-leaving age to its level when the state increased
minimum unrestricted driving age to >16, while column (4) limits the sample to states that never changed school-leaving age.
Standard errors are clustered at the state level. * p<0.10, ** p<0.05, *** p<0.01

Estimates of β3 indicate that the differential effect of GDL laws on dropout behavior for
16-year-olds in states where dropout is legally permitted (relative to states where dropout
is not legal) is negative and statistically significant. The total (or net) effect of GDL laws
on teen dropout behavior is estimated by the sum of coefficients, β1+β3. This sum reveals
that increasing the minimum driving age in states where 16-year-olds can legally drop out
reduces the probability that these teens are no longer in school by approximately 1.15pp,
a 30% reduction from the mean. This is smaller than the simple difference-in-differences
estimates shown in Table 2, indicating that, if there is bias from the simultaneous changes
in compulsory schooling laws (de Chaisemartin and D’Haultfœuille 2023), it is attenuat-
ing estimates of β3 toward zero.

To mitigate such conflating effects from changes in CS laws, we employ several ro-
bustness checks.28 First, we replace CSst in Equation 3 with a time-invariant measure that

27This is in mild contrast to Bell, Costa, and Machin (2016), who find inconsistent patterns between vari-
ous measures of compulsory schooling and educational attainment.

28An additional concern regarding CS laws may be that employment exemptions (which allow teens to
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is fixed at each state’s minimum school-leaving age in the year that the GDL law first in-
creases the minimum unrestricted driving age to over 16. For states where the minimum
unrestricted driving age is either always less than or equal to 16 or always greater than
16, we use the minimum school-leaving age from the first year of the sample, 1990.29 The
results of this specification, shown in column (3) of Table 3, are nearly identical to the pre-
ferred specification in column (2).30 Second, we estimate Equation 3 on the sub-sample
of states that did not change their minimum school-leaving age during the time period
under study (i.e., the union of treatment and placebo states used to estimate Equations 1
and 2). Results, shown in column (4) of Table 3, are a bit larger in magnitude than in our
main specification and are in line with treatment state results in Table 2.

We also recast the interacted difference-in-differences design to apply the BJS imputa-
tion estimator in columns (5)–(7) of Table 3.31 Column (5) omits all controls except CSst.
Column (6) includes all controls. Column (7) omits never-treated units (all three imputa-
tion columns omit always-treated units) to test whether our results hinge on comparisons
to states that are subject to different trends than those that eventually adopt GDL laws;
they do not. Estimates across these three columns are similar to our main results and are
statistically significant, despite the smaller sample sizes.

We also estimate two models similar to our preferred specification that consider sub-
sets of the time variation used in the full analysis and allow for some dynamism in treat-
ment effects. The results (shown in Table C.1 and Table C.2 of Appendix C) provide evi-
dence that our main results are not being driven by long-run dynamics in the treatment
effects of GDL laws and that effects remain relatively constant over time. Taken together,
these exercises indicate that these results are robust to dynamics, to arbitrary treatment
effect heterogeneity, and to reasonable restrictions on the control group.

drop out of school prior to reaching the age threshold if they are employed) cause measurement error in
the CSst variable. We collect data on such exemptions (thanks to Bell, Costa, and Machin 2022) and show
that our main results are robust to dropping states with employment exemptions in their CS laws. These
results are available upon request.

29In this specification we also control separately for the actual time-varying school-leaving age.
30Note that in these alternate specifications, the coefficient β2 is absorbed by the state fixed effects.
31For this exercise, treatment is the interaction term GDLst ∗ CSst, though CSst also enters as a control

variable and the sample excludes those in always-treated states and in state-years after the treatment turns
off. See Appendix C, Section C.2 for additional details.
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4.4 Alternative Dropout Data

To further support these findings, we analyze the impact of GDL laws on teen dropout de-
cisions at the school-district level using the NCES’ Common Core of Data. The Common
Core is a comprehensive national database of public elementary and secondary schools
and provides high school dropout rates aggregated at the school district-by-grade level.
A key advantage of this dataset is that, because it includes data by school district, we
can include school district fixed effects to control for time-invariant differences between
places within states; we discuss this data and analysis in detail in Appendix D.

We find that the implementation of GDL laws leads to a 0.43pp reduction in high
school dropout rates in the NCES data (a 13% reduction at the mean). Furthermore, the
effects of increasing the minimum driving age to over 16 are largest in the 11th grade (a
grade in which students are likely to be 16 years old and thus directly affected by GDL
laws)—a 15% reduction from the mean. The NCES data are reported at the district-by-
grade level and so estimates from this analysis combine the GDL effects on students of
various ages, some of whom might be directly impacted by the law change and others
who are not. Furthermore, within a grade, some students might be restricted by the
state’s compulsory schooling laws while others within the same grade are not. Because
of these dual sources of measurement error, it is unsurprising that these estimates are
smaller in magnitude than those reported in Table 3. However, we view these results as
supporting our main findings and adding compelling evidence that imposing restrictions
on teen mobility maintains high school enrollment.

4.5 Medium- and Long-Run Effects

Thus far, we have focused exclusively on the immediate impacts of GDL laws on the
behavior of 16-year-olds. To determine whether GDL laws have lasting effects on ed-
ucational attainment, we next look for medium-run effects on the dropout behavior of
individuals once they have turned 17.

We create an alternate sample from the CPS ASEC of 17-year-olds and estimate a
slightly modified version of our preferred interacted difference-in-differences model:

NotInSchoolist = β1GDLst−1 + β2CSst + β3GDLst−1 ∗ CSst +X ′
iν +Ds +Dt + ϵist, (4)

where GDLst−1 is an indicator variable that equals one if the minimum unrestricted driv-
ing age in state s was > 16 in year t − 1. That is, we link the sample of 17-year-olds to

21



their state’s GDL laws from the previous year (when the individual was aged 16). The
compulsory schooling laws are captured by CSst, which is an indicator that equals one if
the minimum school-leaving age is ≤ 17 (i.e., 17-year-olds are legally permitted to drop
out of school). We retain gender and race/ethnicity controls (as in Equation 3), but drop
other controls for consistency with the longer-run results below.

Column (1) of Table 4 reports the average marginal effects from estimating Equation 4
on the main estimation sample of 16-year-olds but using only the limited gender and
race/ethnicity controls (for comparison). Column (2) displays the average marginal ef-
fects for the sample of 17-year-olds. These results show that the effects of GDL laws
persist for at least one year after a teen has first experienced the driving restriction. There
is no evidence of an impact of GDL laws in placebo states where school attendance is
compulsory. On the other hand, GDL laws create a 1.0pp decline in the probability of
dropping out of school where dropout is legal at age 17. These results are very similar to
the effects on 16-year-olds, even though we expect some attenuation due to high school
completion by 17-year-olds. This suggests that GDL laws restricting access to driving at
age 16 may encourage teens to not only postpone dropping out, but to eventually com-
plete their high school diploma.

To test this, we next turn to the 2008–2019 American Community Survey (ACS) data
to examine educational attainment among US-born respondents aged 22 to 34.32 Because
these data pool people of different ages, we assess educational attainment, yisca, of person
i in state s in birth cohort c of age a using:

yisca = β1GDLsc + β2CSsc + β3GDLsc ∗ CSsc +X ′
iν +Dsa +Dca + ϵisca. (5)

We define treatment based on state of birth and cohort, where GDLsc indicates if the
minimum unrestricted driving age in state s for cohort c at age 16 was > 16 and CSsc

indicates if those under the age of 18 can legally leave school. State-by-age fixed effects,
Dsa, control for age-specific outcomes that systematically vary by state, and cohort-by-age
fixed effects, Dca, control for general age-specific trends or cohort trajectories.33

32In 2008, the ACS began to differentiate GED from regular high school diplomas. The age window of 22
to 34 maximizes overlap with the CPS sample, and we omit those 21 and under to limit measurement error
from those still completing their secondary education.

33It is also possible to use sample year and age to index Equation 5; this yields identical estimates of β.
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Table 4: Effects of Minimum Unrestricted Driving Age on Long-Run Educational Attainment

CPS Sample ACS Sample

Not In School = 1 Did Not Complete Did Not Complete
At Age 16 At Age 17 Max Grade ≤ 10 HS or GED HS (excl. GED)

(1) (2) (3) (4) (5) (6) (7) (8)

Min. Unres. Driving Age >16 (β1) 0.0021 0.0060 -0.0011 -0.0008 -0.0001 0.0006 -0.0000 0.0006
(0.0043) (0.0052) (0.0014) (0.0014) (0.0016) (0.0017) (0.0025) (0.0027)

School-Leaving Age Allows Dropout (β2) 0.0197*** 0.0111** 0.0034** 0.0048*** 0.0048* 0.0069*** 0.0077* 0.0106**
(0.0050) (0.0054) (0.0016) (0.0016) (0.0025) (0.0024) (0.0043) (0.0043)

Min. Unres. Driving Age >16 -0.0132*** -0.0155** -0.0023 -0.0028 -0.0031 -0.0041* -0.0048* -0.0064**
× School-Leaving Age Allows Dropout (β3) (0.0051) (0.0064) (0.0016) (0.0018) (0.0020) (0.0022) (0.0025) (0.0028)

Effect of GDL if -0.0111** -0.0095* -0.0034*** -0.0036** -0.0032* -0.0035 -0.0049** -0.0058**
School-Leaving Age Allows Dropout (β1 + β3) (0.0051) (0.0055) (0.0012) (0.0014) (0.0019) (0.0022) (0.0024) (0.0027)

Mean of Outcome 3.8% 6.2% 4.0% 4.4% 7.9% 8.7% 12.3% 13.3%
Obs 75,196 73,187 4,779,503 3,264,783 4,779,503 3,264,783 4,779,503 3,264,783
Limit Sample to

Those Residing in Birth State – – No Yes No Yes No Yes

Columns 1 and 2 represent average marginal effects from probit regression using CPS ASEC data from 1990–2017 and include state and year fixed
effects and indicators for gender and race/ethnicity. The ACS Sample uses single-year ACS data from 2008–2019 for 22–34 year olds and excludes
those not born in the United States. Columns 3–8 are coefficients from a linear probability model using the ACS Sample and include state-by-age
and sample-year-by-age fixed effects and indicators for gender and race/ethnicity. Standard errors are clustered at the state level. * p<0.10, **
p<0.05, *** p<0.01
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Columns (3)–(8) of Table 4 reveal that GDL laws improve several measures of long-
run educational attainment in settings where teen dropout is permitted. Odd columns
use the full ACS estimation sample, while even columns restrict the sample to those liv-
ing in their state of birth at the time of survey in order to reduce measurement error in
treatment. Adults who experienced a GDL law at age 16 are 0.3pp–0.4pp less likely to
have no more than a 10th-grade education. There is a similar (though less precise) ef-
fect on the probability of high school completion inclusive of GED diplomas. Excluding
GEDs, adults who experienced GDL laws at age 16 in states where dropout was permit-
ted are 0.5pp-0.6pp more likely to have obtained a traditional high school diploma. These
long-run findings are all the more striking because of the significant likelihood of atten-
uation bias resulting from measurement error in our assignment of treatment (stemming
from the fact that we do not observe what state an individual resided in at age 16).

4.6 Heterogeneity Analysis

We return to the CPS sample of 16-year-olds and use our preferred specification (Equa-
tion 3) to explore heterogeneity across sub-populations. Estimated marginal effects are
shown in Table 5, which also reports mean outcome values for each subgroup, and Fig-
ure 3. The top-left panel of Figure 3 reports the effects of GDL laws on 16-year-old dropout
separately for males and females. The top three estimates show the effects of GDL laws
in states where dropout is not legal (β1) for the full sample, for male teens only, and for fe-
male teens only. The bottom three estimates show the effects of GDL laws in states where
dropout is legal for 16-year-olds (β1+β3) for those same three populations. It is clear from
these estimates that there are no meaningful differences in the effects of GDL laws by sex,
and a Wald test reveals that the estimates are also not statistically different.34

We next examine heterogeneity by race and household income. Heterogeneity in ef-
fects among these groups could reflect differential vehicle availability to teens, or could
also reflect differential reliance on a vehicle, if available. For example, a lower-income
household may be less able to afford a vehicle for teen use. If vehicle take-up for teens in
lower-income households is ex ante low, there would be less margin for GDL policies to
shift behavior. At the same time, teens in lower-income households may have less access
to alternatives to driving, such as parental transportation. This would suggest increased
exposure to changes wrought by GDL laws and potentially larger effects.

34Due to the difficulties of testing for equality of marginal effects estimates across samples in the probit
specification, we instead test for equality across samples using linear probability model estimates.
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Figure 3: The Effect of Minimum Unrestricted Driving Age on 16-Year-Old Dropout for
Sub-Populations

Effect of GDL
in states

where dropout
is NOT legal

Effect of GDL
in states

where dropout
is legal

-.04 -.02 0 .02 .04

Full sample Male
Female

By Sex

Effect of GDL
in states

where dropout
is NOT legal

Effect of GDL
in states

where dropout
is legal

-.04 -.02 0 .02 .04

Full sample Non-URM
URM

By Race/Ethnicity

Effect of GDL
in states

where dropout
is NOT legal

Effect of GDL
in states

where dropout
is legal

-.04 -.02 0 .02 .04

Full sample Above Median HH Income
Below Median HH Income

By Socioeconomic Status

Effect of GDL
in states

where dropout
is NOT legal

Effect of GDL
in states

where dropout
is legal

-.06 -.04 -.02 0 .02 .04

Full sample Urban
Non-Urban

By Urban Status

Average marginal effects from probit regression using CPS ASEC data from 1990–2017. Bars show 95%
confidence intervals. All specifications include state and year fixed effects. Controls include: gender;
race/ethnicity indicators; mother’s education; presence of father in household; receipt of SNAP benefits;
state unemployment rate; NPND laws; and state log real effective minimum wage. Standard errors are
clustered at the state level.

In the top-right panel of Figure 3 (and columns (4)–(5) of Table 5) are effects of GDL
laws estimated separately for underrepresented minorities (teens who identify as Black,
Hispanic, or Native American) and all other race/ethnicity groups (non-URM). These
estimates reveal that the negative impact of GDL laws on high school dropout is largely
driven by non-URM 16-year-olds, who typically have a lower average dropout rate. The
estimates for URM teens are quite noisy and much smaller than in the overall population.
These results may reflect greater access to vehicles related to wealth or household income,
or a greater affinity for car culture among non-URM families.
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Table 5: The Effect of Minimum Unrestricted Driving Age on 16-Year-Old Dropout for Sub-Populations

Not In School = 1

Full Non- HH Income HH Income Non-
Sample Men Women URM URM ≥ Median < Median Urban Urban

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Min. Unres. Driving Age >16 (β1) 0.0014 0.0039 -0.0008 0.0059 -0.0081 -0.0034 0.0054 0.0066 -0.0159***
(0.0040) (0.0055) (0.0047) (0.0047) (0.0075) (0.0035) (0.0060) (0.0043) (0.0061)

School-Leaving Age ≤ 16 (β2) 0.0191*** 0.0238*** 0.0149*** 0.0194*** 0.0242** 0.0152*** 0.0234** 0.0172*** 0.0307***
(0.0049) (0.0068) (0.0057) (0.0058) (0.0109) (0.0049) (0.0101) (0.0049) (0.0114)

Min. Unres. Driving Age >16 -0.0129** -0.0156** -0.0103* -0.0182*** 0.0008 -0.0121*** -0.0150* -0.0149*** -0.0091
× School-Leaving Age ≤ 16 (β3) (0.0052) (0.0071) (0.0054) (0.0061) (0.0113) (0.0047) (0.0090) (0.0053) (0.0149)

Effect of GDL if -0.0115** -0.0117* -0.0111** -0.0123** -0.0073 -0.0154*** -0.0096 -0.0082 -0.0250*
School-Leaving Age ≤ 16 (β1 + β3) (0.0052) (0.0065) (0.0055) (0.0060) (0.0126) (0.0049) (0.0083) (0.0055) (0.0151)

Mean Outcome 0.038 0.040 0.035 0.032 0.050 0.024 0.051 0.035 0.046
Obs 75,196 38,587 36,609 52,641 22,441 37,598 37,598 59,227 15,897

Average marginal effects from probit regression using CPS ASEC data from 1990–2017. All specifications include state and year fixed effects. Con-
trols include: gender; race/ethnicity indicators; mother’s education; presence of father in household; receipt of SNAP benefits; state unemployment
rate; NPND laws; and state log real effective minimum wage. Standard errors are clustered at the state level. * p<0.10, ** p<0.05, *** p<0.01
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In the bottom-left panel of Figure 3 (and columns (6)–(7) of Table 5), we split the sam-
ple into two halves based on household income (as reported in the CPS). The median
household income is $53,236 (in 1999 dollars). Sixteen-year-olds in lower-income house-
holds are more than twice as likely to be observed as not in school than those in higher-
income households. However, the estimated effects of GDL laws are noticeably smaller
and less precise for the lower-income sub-sample (despite having the same sample size).
This provides some support to the hypothesis that teens from lower-income backgrounds
are more likely to experience direct effects of the GDL laws making travel to school more
difficult and therefore increasing the probability of dropout. Those (positive) direct ef-
fects would then counterbalance the (negative) indirect effects and lead to a combined
effect that is closer to zero. An alternative explanation is greater vehicle availability for
teens in higher-income households, for whom GDL laws decrease the probability of high
school dropout by 64% at the mean. Note, however, that the difference in the estimates
across the lower-income and higher-income groups is not statistically significant.

Finally, the bottom-right panel of Figure 3 (and columns (8)–(9) of Table 5) shows the
effects of GDL laws estimated separately for teens living in urban and non-urban areas.
For teens in urban locations, the effects of GDL laws on high school dropout are negative
and significant even when compulsory schooling laws make dropout illegal for the 16-
year-olds in the sample. This suggests that automobile access may provide even greater
access to educational distractions in urban areas; GDL laws so greatly reduce access to
these activities that CS laws do not modulate their effect.

4.7 Variation in GDL Intensity

We next investigate potential mechanisms to explain why increasing the minimum driv-
ing age reduces the probability of high school dropout in states where teens can legally
drop out. The negative estimate of the net effect of GDL laws indicates that any direct ef-
fect of GDL laws on commuting to high school is more than completely offset by indirect
effects stemming from reduced access to labor and leisure activities. We further tease this
apart using variation in the intensity of GDL laws.

As discussed in Section 2, GDL laws create an intermediate licensing level that restricts
nighttime driving and/or restricts the number of passengers who may ride with a teen
driver. The binary measure of GDL laws (GDLst = 1 if the minimum unrestricted driv-
ing age is > 16) encompasses two levels of mobility restrictions: (A) state-years where
16-year-olds have access only to an intermediate license; and (B) state-years where 16-
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year-olds do not have access to any level of license (except perhaps a learner’s permit).
When teens have access to the intermediate license, it is unlikely that we would observe
a direct effect of the GDL law on the dropout decision. Because the intermediate license
primarily restricts nighttime driving and carpooling, it seems less likely that this type of
GDL restriction would hinder the teen’s ability to commute to school. On the other hand,
when a teen has no access to driving, we expect to see both an indirect channel from re-
duced access to labor and leisure activities and the direct channel stemming from limiting
transportation to and from school.

We estimate the following model to allow for these different levels of mobility restric-
tion within GDL laws:

NotInSchoolist = βA
1 IntLicensest + βB

1 NoLicensest + β2CSst

+ βA
3 IntLicensest ∗ CSst + βB

3 NoLicensest ∗ CSst

+X ′
iν + Z ′

stµ+Ds +Dt + ϵist. (6)

This specification is similar to Equation 3, except that we have replaced the single binary
measure of GDL restrictions with two indicator variables corresponding to the two dif-
ferent levels of mobility restrictions. IntLicensest is an indicator variable that equals one
if 16-year-olds in state s in year t can procure an intermediate driver’s license only (and
cannot obtain a full-privilege license until they are older). NoLicensest is an indicator
variable that equals one if 16-year-olds cannot obtain either type of driver’s license (inter-
mediate or unrestricted). The omitted category comprises state-years where 16-year-olds
have access to unrestricted, full-privilege licenses. The marginal effects estimates from
this expanded model are shown in Table 6.

Estimates of the placebo test in the expanded model (βA
1 and βB

1 ) are once again small
and statistically insignificant under both levels of GDL restrictions. The estimate of βA

3

indicates that the differential effect of having access to an intermediate license only for
16-year-olds in states where dropout is legally permitted is negative and statistically sig-
nificant. The total effect of the restriction to an intermediate license on teen dropout be-
havior is estimated by the sum of coefficients, βA

1 + βA
3 . This sum reveals that limiting

teen driving access to only the intermediate license level reduces the probability of high
school dropout by 0.99pp in states where compulsory schooling laws are non-binding.
Because the intermediate license is unlikely to hinder access to school, this negative ef-
fect represents only indirect channels. In other words, the reduction in access to labor

28



Table 6: Effects of Different Levels of Mobility Restrictions on 16-Year-Old Dropout

Not In School = 1

(1) (2)

GDL at 16:

Intermediate License Only (βA
1 ) 0.0038 0.0029

(0.0044) (0.0041)
No License (βB

1 ) 0.0023 0.0018
(0.0058) (0.0052)

School-Leaving Age ≤ 16 (β2) 0.0190*** 0.0183***
(0.0050) (0.0050)

GDL at 16 × School-Leaving Age ≤ 16:

Intermediate License Only (βA
3 ) -0.0137*** -0.0134***

(0.0048) (0.0051)
No License (βB

3 ) -0.0020 -0.0035
(0.0060) (0.0063)

Effect of Intermediate License Only if -0.0099* -0.0106**
School-Leaving Age ≤ 16 (βA

1 + βA
3 ) (0.0051) (0.0052)

Effect of No License if 0.0003 -0.0017
School-Leaving Age ≤ 16 (βB

1 + βB
3 ) (0.0086) (0.0083)

Additional Effect of No License if 0.0102** 0.0089*
School-Leaving Age ≤ 16 (βB

1 + βB
3 )- (βA

1 + βA
3 ) (0.0048) (0.0047)

Controls - Y
Obs 75,196 75,196

Average marginal effects from probit regression using CPS ASEC data from
1990–2017. All specifications include state and year fixed effects. Controls in
column (2) are: gender; race/ethnicity indicators; mother’s education; pres-
ence of father in household; receipt of SNAP benefits; state unemployment
rate; NPND laws; and state log real effective minimum wage. Standard er-
rors are clustered at the state level. * p<0.10, ** p<0.05, *** p<0.01

and/or leisure activities caused by limiting 16-year-old driving privileges leads to a 26%
reduction in the probability of high school dropout among this age group.

The estimate of βB
3 indicates that the differential effect of having no access to driving

for 16-year-olds in states where dropout is legally permitted (vs. states where the CS laws
are binding) is negative but statistically insignificant. The total effect of the restriction to
no license on teen dropout behavior is estimated by the sum of coefficients, βB

1 +βB
3 . This

29



sum is almost precisely zero.35 This estimate suggests that the negative effect of the GDL
law on high school dropout stemming from reduced access to alternate activities is offset
by a positive direct effect stemming from reduced ability to commute to school when teen
access to driving is completely removed.

Also of interest here is the difference between the two total effect estimates, (βB
1 + βB

3 )
- (βA

1 + βA
3 ). This difference identifies the additional effect of going from a GDL law that

restricts teens to an intermediate license only to a GDL law that fully restricts teen driving
(at age 16). This estimate, a 0.89pp increase in the probability of high school dropout,
again suggests that there is a significant direct effect of the GDL laws on teens’ ability
to commute to school that can lead to an increase in high school dropout if teen access
to driving is completely removed. Note, however, that interpreting this point estimate
solely as the direct effect requires the strong assumption that the indirect effect of fully
restricting teen driving is no larger than the indirect effect of the intermediate license
alone. Therefore, we take the estimates in Table 6 as merely an indication that both direct
and indirect channels exist for this policy and rely on structural estimation to provide a
more formal effect decomposition in Section 6.

5 Employment Results

We next study the effects of GDL laws on teen employment. This analysis provides insight
as to whether the findings on high school dropouts are attributable, at least in part, to
reduced access to job opportunities under GDL laws. We replace the dependent variable
in Equation 3 with an indicator for whether a 16-year-old is currently in the labor force:

LFPist = β1GDLst + β2CSst + β3GDLst ∗ CSst +X ′
iν + Z ′

stµ+Ds +Dt + ϵist. (7)

All other variable definitions are unchanged.
In Figure 4, we illustrate the potential direct and indirect channels through which GDL

laws might impact teen labor force participation. In panel (a), we consider the case where
the teen resides in a state with compulsory schooling laws that do not permit dropping
out at age 16. In this case, the restriction on teen driving imposed by the GDL laws will
have a negative direct effect on employment. However, the GDL laws may also impact
teen employment indirectly by limiting access to leisure activities. This indirect effect will

35Note that only 12 states ever fully restricted access to driving for 16-year-olds during the time period
under study. Thus, estimation of βB

1 and βB
3 relies on a relatively small number of observations.
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Figure 4: Direct and Indirect Effects of GDL Laws on Labor Force Participation

(a) When Teens Cannot Drop Out, CSst = 0
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Indirect Effect from School if Substitutes

have a positive effect on employment.36 Because of the binding compulsory schooling
laws, there is no effect of the GDL laws on the teen’s schooling decision (and therefore,
no indirect effect on teen employment coming through that channel). The coefficient β1 in
Equation 7 captures the sum of the direct effect and the indirect effect from leisure when
CS laws prohibit 16-year-old dropout.

In panel (b) of Figure 4, we illustrate the case where CS laws are non-binding and
16-year-olds are legally permitted to drop out of school. This adds an additional channel
through which GDL laws can impact teen labor force participation. Namely, the reduc-
tion in access to school may have an indirect effect on teen employment decisions. If teens

36Figure 4 implicitly assumes that work and leisure are substitutes. We do not impose substitutability for
estimation of Equation 7.
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view work and school as substitutes, then the indirect effect caused by reduced access to
school contributes positively to labor force participation. If instead, they view work and
school as complementary activities, then the indirect effect from the school channel con-
tributes negatively to labor force participation. In Equation 7, β3 captures this additional
indirect channel between work and school.

Columns (1)–(2) of Table 7 show estimated average marginal effects from the inter-
acted difference-in-differences model of Equation 7. Increasing the minimum driving
age has a small, statistically insignificant effect on 16-year-old labor force participation in
states where dropping out is disallowed. As discussed above, this estimate reveals the
sum of the (negative) direct effect of GDL laws on teen labor force participation and the
(positive) indirect effect stemming from reduced access to leisure activities. We can there-
fore interpret this null finding as an indication either that neither of these two effects is
very large, or that they are approximately equal in magnitude (and opposite in sign).

Conversely, GDL laws significantly decrease labor force participation by 1.76pp in
states where teens are legally able to drop out. At the mean, this is a 7.5% reduction in 16-
year-old labor force participation (about one quarter of 16-year-olds work in this sample;
see Table 1).37 This negative estimate indicates that allowing for the additional channel of
high school dropout creates a negative indirect effect on teen labor force participation. In
other words, when GDL laws reduce access to school, the negative direct effect on school-
going also leads to a negative indirect effect on the propensity to work. This is consistent
with a model in which teens view work and school as complementary activities, rather
than as substitutes.

As with the education analysis, we show that these employment results are not being
confounded by the evolution of CS laws.38 Column (3) replaces CSst with a time-invariant
measure that fixes the CS law at its value in the year that the GDL laws first bind for 16-
year-olds or in 1990 (for states that did not change their CS law in the sample). Column
(4) restricts the sample to states that did not change their minimum school-leaving age
during the sample. Results from both exercises are stronger than baseline estimates. We
also estimate the recast, interacted difference-in-differences design using the BJS estima-
tor (see Appendix C, Section C.2 for details). The estimates, shown in columns (5)–(7) of

37Results are similar if we replace the dependent variable with an indicator for employment rather than
labor force participation. Moreover, results from a linear probability model are similar but larger in magni-
tude and substantively more significant (see Appendix Table B.4).

38We also find that results are not confounded by measurement error in the CSst variable caused by CS
law employment exemptions. The results in Table 7 are qualitatively unchanged when we drop states that
have employment exemptions in their CS laws. These results are available upon request.
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Table 7: Effects of Minimum Unrestricted Driving Age on Teen Labor Force Participation

In Labor Force = 1

(1) (2) (3) (4) (5) (6) (7)

Min. Unres. Driving Age >16 (β1) -0.0032 -0.0024 0.0007 -0.0105
(0.0100) (0.0110) (0.0103) (0.0132)

School-Leaving Age ≤ 16 (β2) 0.0238 0.0173
(0.0156) (0.0161)

Min. Unres. Driving Age >16 -0.0134 -0.0152 -0.0206* -0.0172
× School-Leaving Age ≤ 16 (β3) (0.0127) (0.0133) (0.0125) (0.0189)

Marginal Effect of GDL if -0.0166* -0.0176* -0.0200* -0.0277** -0.0295*** -0.0273*** -0.0281***
School-Leaving Age ≤ 16 (β1 + β3) (0.0097) (0.0099) (0.0105) (0.0142) (0.0101) (0.0098) (0.0101)

Estimator Probit Probit Probit Probit Imputation Imputation Imputation

Fixed in Never
School-Leaving Age As Observed Yr. of GDL Switchers As Observed

Change Only

Controls - Y Y Y - Y Y
Exclude Always Treated - - - - Y Y Y
Exclude Never Treated - - - - - - Y
Obs 75,196 75,196 75,196 46,567 50,729 50,729 46,853

Average marginal effects from probit regression (columns 1–4) and from the imputation estimator of Borusyak, Jaravel, and
Spiess (2021) (columns 5–7) using CPS ASEC data from 1990–2017. All specifications include state and year fixed effects. Con-
trols in columns (2)–(4) and (6)–(7) are: gender; race/ethnicity indicators; mother’s education; presence of father in household;
receipt of SNAP benefits; NPND laws; state unemployment rate; and state log real effective minimum wage. Column (3) also
includes indicators for the state minimum legal dropout age. Column (3) fixes school-leaving age to its level when the state
increased minimum unrestricted driving age to >16, while column (4) limits the sample to states that never changed school-
leaving age. Standard errors are clustered at the state level. * p<0.10, ** p<0.05, *** p<0.01

Table 7, are similar to our main results and are actually larger and more precise.39

We differentiate effects on full- and part-time employment in Appendix Table B.5.
Between half and three-quarters of the overall employment effect comes from reduced
full-time employment. This effect on full-time work is not necessarily driven by teens
who have dropped out of school: more than half (56%) of full-time teen workers also
report attending school.40 Notably, there is a significant negative effect of GDL laws on
full-time employment regardless of whether dropout is permissible or not. This strongly
suggests a negative direct effect of GDL laws on full-time work.

Taken together, these results indicate that the impact of GDL restrictions is, at most, a
weak reduction in teen labor force participation when teens are required to stay in school.
However, when teens can drop out, they significantly reduce labor force participation in

39In part, effects may be larger because employment levels are lower in the later years that are dropped
for the BJS exercise. Note also that the BJS exercises assume that β1 = 0. This assumption is supported by
the nearly-zero point estimates of β1 in columns (1)–(3) of Table 7.

40This concentration on full-time employment does not necessarily imply that effects on part-time em-
ployment are insubstantial. It could well be that GDL laws lead some teens to flow from full-time to part-
time work and other teens with part-time work to exit the labor force.
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response to the GDL laws. This strongly suggests that there is an indirect channel linking
teens’ decisions regarding schooling and work when they are faced with mobility restric-
tions. However, GDL laws may also restrict access to other activities besides work and
school, and the estimates in Table 3 could reflect substitution away from those activities as
well. We next turn to a formal discrete choice model to better understand these findings.

6 Distinguishing Channels with Model-Based Analysis

The positive effect of GDL laws on high school retention likely reflects the indirect con-
sequences of work and leisure decisions, which dominate any direct effects on access to
school. Which of these indirect channels is most important depends on substitution pat-
terns between school and work. If school and work are highly substitutable, then the
negative effect of GDL laws on high school dropout rates reflects a reduction in teen la-
bor force participation. If not, then the change in dropout behavior can be attributed to
changes in access to other activities.

Distinguishing between direct and indirect channels has important implications for
policy design. To do so, we develop a model that adapts the multiple discrete product
choice model of Gentzkow (2007) to the context of teen schooling and employment de-
cisions.41 Agents select work, school, both work and school, or neither activity. School
and work can be complements or substitutes.42 Agents have potentially correlated id-
iosyncratic preferences for these activities. Overall, the model has similarities to Mont-
marquette, Viennot-Briot, and Dagenais (2007) or a static version of Eckstein and Wolpin
(1999), though we focus on estimating and decomposing treatment effects and cleanly
identifying school-work spillovers.

6.1 Model Description

Denote work and school as A and B, respectively. Each agent i chooses to partake in one
activity, both, or neither; their choice set is (yAi , yBi ) ∈ {0, 1}2 ≡ C. The normalized indirect

41An alternative model is bivariate probit with both outcomes endogenous. However, Lewbel (2007)
shows that such a model is generally incoherent and incomplete.

42Because the activities do not have observed pecuniary costs, they are substitutes (complements) in the
sense that restricting access to one activity increases (reduces) demand for the other activity.
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utility that agent i receives from each choice is:

Vi(0, 0) = γ̃0GDL0
st (8)

Vi(1, 0) = αA + (γA + γ̃0)GDLA
st + x′

istλ
A + z′stπ

A + fA(s, ξ) + δAt + eAi (9)

Vi(0, 1) = αB + (γB + γ̃0)GDLB
st + x′

istλ
B + z′stπ

B + fB(s, ξ) + δBt + eBi (10)

Vi(1, 1) = Vi(1, 0) + Vi(0, 1) + Γ + (γΓ − γ̃0)GDLΓ
st, (11)

where γk+ are the parameters of interest intended to capture the utility effect of the grad-
uated driver license policy, for k+ ∈ {0, A,B,Γ}. We index GDL by k+ to anticipate the
counterfactual decomposition in Section 6.3; each individual experiences only one value
of GDL

k+
st (equal to GDLst), but this does not hold in the counterfactual exercise.

The idiosyncratic error terms reflect the latent indirect utility associated with each
activity, and may be correlated. Thus, eAi can be interpreted as motivation to work or
labor force attachment, and eBi can be interpreted as motivation for school or expected
returns to schooling. Teens with low values of both terms have a high value of leisure.
The utility agents get for choosing both activities is the sum of utilities for each activity
plus Γ + (γΓ − γ̃0)GDLΓ

st, which is positive if school and work are relative complements
and negative if they are relative substitutes.

The vector zst includes state-year characteristics (which provide exclusion restrictions
for identification):

z′st =
[
URst, ln(MWst), CSst, GDLB

st × CSst

]
.

Here, URst is the state-level unemployment rate, ln(MWst) is log real minimum wage, and
CSst and GDLst are measures of the compulsory schooling laws and graduated driver
licensing laws, as in Equation 3. The fk(s, ξ) terms include correlated random effects
(discussed below) and δkt represent year dummies, k ∈ {A,B}. The model also includes
individual and state characteristics xist: gender, race/ethnicity indicators, mother’s ed-
ucation, presence of father in household, receipt of SNAP benefits, and the presence of
NPND laws. Agents choose the bundle (yAi , y

B
i ) ∈ C that maximizes utility Vi(y

A
i , y

B
i ).

The model allows for a non-standard normalization that nests the standard normal-
ization when γ̃0 = 0. Because discrete choice models identify only relative differences in
utility, the utility of one choice is typically normalized to zero (e.g., Vi(0, 0) = 0). Such a
normalization does not affect model fit or identification, but makes the implicit assump-
tion that the utility of the normalized option is not affected by treatment. However, the
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literature relating changes in teen risky behaviors to GDL law adoption strongly suggests
that the value of the neither-work-nor-school option was shifted by the implementation
of GDL policies (e.g., Deza and Litwok 2016; Deza 2019; Huh and Reif 2021). Accordingly,
we interact an auxiliary parameter, γ̃0, with the policy, Vi(0, 0) = γ̃0GDL0

st, to capture the
impact of GDL laws on the utility of the normalized option. We then set the utility for
each other option to: Vi(y

A
i , y

B
i ) = Ṽi(y

A
i , y

B
i )− Ṽi(0, 0) + γ̃0GDL0

st. The observed data are
compatible with any value of the auxiliary parameter; γ̃0 merely redistributes the impact
of the GDL laws to the outside option.

The model can be used to decompose total effects into their direct and indirect chan-
nels. Total effects of GDL laws on each activity capture the overall impact of increasing
the minimum unrestricted driving age from 16 or less. Total effects are the model analogs
to the reduced-form estimates shown in Section 4 and Section 5. Direct effects (denoted
θkDir) reflect how each GDL component affects its own activity, e.g., the effect of GDLA on
working and of GDLB on school enrollment. Indirect effects capture the consequences
of the direct changes in utility of GDL laws on one activity to the other activities, i.e., of
GDL0, GDLB, and GDLΓ on working, or GDL0, GDLA and GDLΓ on schooling deci-
sions.43 While total effects are invariant to the choice of γ̃0, direct and indirect effects are
not.

6.2 Identification and Estimation

We make the following assumptions to identify and estimate the model parameters:

Assumption 1 (Bivariate Normal Idiosyncratic Preferences). Idiosyncratic preferences are
independent and distributed bivariate normal: ei = [eAi eBi ]

′ ∼ N(0,Ω), where

Ω =

(
1 ρσ

· σ2

)
,

such that the scale of the idiosyncratic preference is normalized to activity A (work).

Assumption 1 imposes the structure of a multinomial probit model (e.g., Goolsbee
and Petrin 2004) onto the model of multiple discreteness (Gentzkow 2007). The scale of

43We provide precise definitions in Appendix E. There are several reasonable ways to define these effects.
Our definition preserves additivity, such that total effects are the sum of direct and indirect effects.
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one parameter must be fixed because utility is scaleless; we set V (eAi ) = 1.44 Normality
is not necessary; for example, we could instead use a finite number of discrete points to
approximate any bivariate distribution at little computational cost (Train 2008). However,
the parsimony of joint normality facilitates interpretation and discussion.45

We adapt the same policy variation used in Section 4 and 5 to identify policy param-
eters in the structural model. There are two challenges to address. First, Γ and ρ both
reflect how often teens choose work and school together and are not separately identified
without an exclusion restriction.

Assumption 2 (Exclusion Restrictions and Relevance). Components of z may shift the utility
of at most one of A or B, and at least one component of z has a non-zero effect. Specifically,

πA
′

=
[
πA
UR, π

A
MW , 0, 0

]
,

πB
′

=
[
0, 0, πB

CS≤16, π
B
GDL×CS

]
,

and πA + πB ̸= 0.

Assumption 2 primarily serves to separately identify Γ and ρ. A large fraction of
the population choosing activities A and B together could indicate high Γ, high ρ, or
both. However, an exogenous shift in the value of one activity (say, A) should increase
probability of choosing B only if Γ is positive. In contrast, if the probability of choosing
B is unchanged by an exogenous shock in A, than the large fraction selecting both A and
B reflects high ρ (see Section I.D of Gentzkow 2007). Additionally, while the parameters
of multinomial probit models are generally identified, identification is typically weak in
the absence of exclusion restrictions like those in Assumption 2 (Keane 1992).

The π must be excludable and at least one of the π should be non-zero. We include state
unemployment rate and log real minimum wage in the indirect utility of employment,
and exclude them from the indirect utility of schooling. There is a substantial literature
suggesting that these two variables matter for teen employment outcomes.46

44In non-linear models, identifying parameters is distinct from identifying partial effects (Wooldridge
2005). Normalizing the variance is one way to ensure uniqueness of the mapping between the two.

45As an alternative to normality, Berry, Levinsohn, and Pakes (1995) use i.i.d. logit errors with random
coefficients and also flexibly capture substitution patterns. However, incorporating multiple discreteness
and complementarity into such models is challenging, and interpreting coefficients can be tedious.

46Aaronson, Park, and Sullivan (2006) use CPS data and state-level aggregate unemployment rates to
show that teen labor force participation is pro-cyclical. For example, in the early 1990s, unemployment
rates rose and teen LFP declined. Aaronson, Park, and Sullivan (2006) estimate that, had the unemploy-
ment rate remained at the natural rate, teen LFP would have instead risen by 1–2pp during this time period.
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Assumption 2 requires that these two factors do not have a direct effect on schoolgo-
ing, implying that they only have indirect effects through employment decisions. This
is akin to using these two variables as instruments for employment in a regression of
schooling on employment. They are invalid if changes in current labor market conditions
systematically shift changes in the utility of schooling. Similarly, we include our measure
of whether dropping out is permitted (CSst) and its interaction with GDL laws only in the
indirect utility of schooling equation and assume that they do not have a direct effect on
work. Prior research finds significant effects of compulsory schooling on teen schooling
outcomes, suggesting that this instrument is relevant (Oreopoulos 2009; Anderson 2014).
This assumption requires that compulsory schooling laws impact teen employment only
through their effects on schooling decisions.

A second challenge to identifying policy parameters in the model is that fixed effects
create statistical and practical challenges for estimation in this non-linear setting. Statisti-
cally, including fixed effects induces an incidental parameters problem. Estimates of unit
(i.e., state) fixed effects are inconsistent with a fixed number of time periods. Because the
fixed effects are not separable in the likelihood, inconsistency of fixed effects propagates
to other parameters, including γk+ (Lancaster 2000). Practically, adding many fixed effects
greatly increases the computational cost and can generate ‘flat’ areas of the likelihood that
strand maximization procedures away from optima.

Assumption 3 (Correlated Random Effects). The state-specific unobserved effects fk(s, ξ) for
k ∈ {A,B} are correlated with GDLst, xist, and zst in the following manner:

fA(s, ξ) = ξk1GDLs + x′
sξ

k
2 + z′sξ

k
3 ,

where ·s indicates an average across observations in state s.

Assumption 3 imposes a correlated random effects (CRE) structure on the model.
Econometrically, CRE control for some degree of endogeneity between treatment and
outcomes. Algebraically, CRE control for the average levels of covariates, such that the
γk+ reflect changes in GDLst rather than differences in levels. Thus, CRE are similar to

As for the minimum wage, several studies suggest that increasing minimum wages drives decreases in the
extensive margin of teen employment (Neumark and Wascher 1992; 1995; Zavodny 2000; Sen, Rybczyn-
ski, and Van De Waal 2011). In response to this, several papers argue that more carefully controlling for
local employment conditions attenuates this effect (Allegretto, Dube, and Reich 2011; Giuliano 2013). The
inclusion of state-level minimum wage is more similar to the former, as we do not observe location in fine
detail.
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the ‘within’ transformation used for fixed effects, as in Sections 4 and 5. In fact, Mund-
lak (1978) shows that CRE and fixed effects models are algebraically identical in linear
settings.47 See Papke and Wooldridge (2008) for an application of CRE and Wooldridge
(2019) for a recent review.

Assumptions 1–3 are sufficient to identify all model parameters except γ̃0. This pa-
rameter cannot be identified using the data on choice probabilities alone because discrete
choice models identify only relative differences in utility.48 However, we achieve set iden-
tification of γ̃0 with an additional assumption on the sign and relative size of the direct
effect of GDL laws on each activity:

Assumption 4 (Normalization). Let γ̃0 be such that the indirect utility impact of GDL laws on
neither, work, and school are weakly negative (γ̃0 ≤ 0, γA+ γ̃0 ≤ 0, and γB +πB

CS×GDL+ γ̃0 ≤ 0)
and that the direct effect on schooling is no larger in magnitude than the direct effect on work(
|θBDir| ≤ |θADir|

)
. That is, γ̃0 ∈ G, where

G = {g :
(
|θADir(g)| < |θBDir(g)|

)
∧
(
g ≤ min{0,−γA,−(γB + πB

CS×GDL}
)
}.

Each component of Assumption 4 is independently reasonable. Direct effects are likely
weakly negative because GDL laws do not increase access to any activity; each activity has
become weakly harder to access. Moreover, direct employment effects are likely larger
in magnitude than direct schooling effects because there are a number of transportation
alternatives to access school (e.g., school buses) that may not be available for work access.

6.3 Model Results

We estimate the model using maximum simulated likelihood to recover all parameters ex-
cept γ̃0. These parameters are sufficient to estimate total effects and to determine G (given
Assumption 4). We make use of Lemma 1 (see Appendix E), which asserts that, under
Assumption 1, the model given by Equations (8)–(11) can be estimated with a Geweke,
Hajivassiliou, and Keane (GHK) simulator. Appendix E contains additional estimation
details.

47Indeed, when we reestimate our primary model (Equation 3) using correlated random effects instead
of fixed effects, estimates of partial effects are very similar. However, we prefer correlated random effects in
the structural model because (i) the model requires twice the number of fixed effects as Equation 3 (one for
each activity) and (ii) the likelihood of the structural model is no longer concave, increasing the practical
risk that estimation will not find the optimum.

48This is why the utility of one choice is typically normalized to zero (e.g., Vi(0, 0) = 0).

39



Table 8: Key Model Parameters

Work School

ρ σ γA πA
UR πA

MW γB πB
CS≤16 πB

CS×GDL Γ γΓ

-0.4769 0.0215 -0.0265 -0.0234 -0.3650 0.0004 -0.0050 0.0031 0.0113 -0.0020
(0.0020) (0.0188) (0.0006) (0.0002) (0.0024) (4.43e-05) (9.67e-05) (6.33e-05) (0.0002) (4.11e-05)

Point estimates of key model parameters estimated via maximum simulated likelihood using a GHK sim-
ulator and limited-memory BFGS optimization algorithm with 250 draws per observation of idiosyncratic
preferences. Standard errors (in parentheses) are calculated from the inverse Hessian, and for ρ and σ addi-
tionally employ the delta method. Observations are weighted using sample weights.

Table 8 shows estimates of ten key model parameters.49 Non-policy parameters of
particular interest are the correlation of idiosyncratic preferences for school and work, ρ,
and the complementarity between activities, Γ. The negative estimate of ρ (-0.48) indi-
cates negative correlation in the ‘types’ of teens that choose school or work. Those who
receive a high (utility) value from school are more likely to receive low value from work.
Conversely, those receiving the highest utility from work are less likely to find school
valuable. However, the small, positive estimate of Γ indicates that school and work are
weak complements: decreasing access to school mildly decreases the value of work (and
vice versa). This is a key piece of evidence that the decline in employment and increase in
schoolgoing in response to GDL laws do not primarily reflect substitution between those
two activities. It also highlights the importance of identifying the negative correlation in
preferences for schoolgoing and work. Failing to account for ρ < 0 would make working
while in high school appear more deleterious for schoolgoing than it actually is.

These results both confirm and contrast previous findings. Eckstein and Wolpin (1999)
and Montmarquette, Viennot-Briot, and Dagenais (2007) both find evidence of negative
correlation in preferences for school and work (ρ < 0), although the latter paper also
shows that adding a preference for good grades can undo some of this relationship. Eck-
stein and Wolpin (1999) find a negative psychic cost for 16-year-olds participating in both
school and part-time work, although this substitutability decreases with age. However,
Montmarquette, Viennot-Briot, and Dagenais (2007) find evidence that school and work
are complementary for high-achieving high-school seniors. This finding is supported by
Ruhm (1997), who shows that part-time work has no negative effect on educational out-

49Table E.1 assesses model fit by comparing how often a simulated choice matches the observed choice
(averaged over 100 draws of e). The model returns choice shares that deviate by less than 0.02pp from
the observed sample. Overall, the model correctly classifies in sample 62.27% of the time. Given the large
number of idiosyncratic factors that we do not observe, we believe this to be reasonable.
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comes.50 Relative to this literature, we separately identify ρ and Γ, lending credibility to
the narrative that teens’ preferences for schoolgoing and work are negatively related but
that school and work are not substitutes, at least on average.

The policy parameters (γ and π) are qualitatively consistent with results in Section 4
and Section 5. The utility effect of GDL laws on teen labor force participation is larger
than the corresponding effect on high school enrollment, both in absolute levels and in
terms of standard deviations of idiosyncratic preference (|γA| > |γB

σ
|). Instituting a lower

minimum school-leaving age substantially decreases the relative indirect utility of attend-
ing school. However, the interaction of legalizing school-leaving and restricting mobility
(through GDL laws) partially reverses that reduction in relative utility. Moreover, all
four π are significantly different from zero. This suggests that, in conjunction with As-
sumption 2, they are contributing identifying variation to the likelihood. Finally, GDL
laws mildly reduce the complementarity between schoolgoing and work, by about 18%
(≈ γΓ/Γ). This implies that restricting mobility makes it less attractive for teens to pursue
both schooling and employment together.

We show model-based equivalents of the design-based treatment effects estimated
in Sections 4 and 5 as total effects in the top row of Table 9. The model predicts that
adopting a GDL law when school-leaving is legal increases the probability of being en-
rolled in school by 1.07pp and decreases the probability of labor force participation by
0.81pp.51 These results are roughly in line with those in prior sections, though the magni-
tudes differ a bit. This is to be expected, as the model incorporates additional information
by modeling the entire decision space, while also imposing additional structure via the
correlated preferences and exclusion restrictions. The model suggests that GDL policies
reduce the likelihood of the neither-work-nor-school option by about -0.86pp, or about
36% from the mean.52 We interpret this neither option as reflecting teen preferences for
leisure activities, which encompass risky behaviors and less risky forms of truancy. It is
then unsurprising that the estimated reduction in this category is somewhat larger than
previously estimated effects found in the literature on the impacts of GDL laws and teen
driving on risky behaviors (Deza and Litwok 2016; Deza 2019; Huh and Reif 2021).

Table 9 also shows the decomposition of each total effect into direct and indirect chan-

50Relatedly, Light (1999) finds that the effect of high school employment on subsequent earnings for men
is small and relatively short-lived.

51Counterfactuals impose the interacted difference-in-differences design and estimate effects assuming
teens have the option to drop out.

52In our estimation sample, 2.4% of 16-year-olds are neither working nor in school and 23.1% are both in
school and working.

41



Table 9: Decomposition of GDL Law Effects by Activity

Effect of GDL Laws on:

Neither Work School

Effect % of Total Effect % of Total Effect % of Total

Total effect -0.86pp -0.81pp 1.07pp

A. Upper-bound renormalization γ̃0 = min{0,−γA,−(γB + πB
CS×GDL)}.

Direct -0.91pp 106.2% -0.87pp 106.5% 0pp 0.0%
Indirect 0.05pp 0.05pp 1.07pp

via Neither - 0.01pp -1.1% 0.91pp 85.2%
via Other activity 0.05pp -6.2% 0.04pp -5.4% 0.16pp 14.8%

B. Lower-bound renormalization γ̃0 : θADir = θBDir.

Direct -1.30pp 151.6% -0.92pp 113.4% -0.92pp -86.4%
Indirect 0.44pp 0.11pp 1.99pp

via Neither - 0.01pp -1.5% 1.55pp 145.3%
via Other activity 0.44pp -51.6% 0.10pp -12.0% 0.44pp 41.1%

These are the simulated total, direct, and indirect effects of policy counterfactuals using pa-
rameters shown in Table 8 averaged over 100 draws ei per person. To match the interacted
difference-in-differences design, for all counterfactuals CSst = 1 (and so GDLB

st×CSst = GDLB
st).

Observations are weighted using sample weights.

nels for γ̃0 at the upper and lower boundaries of G (see Assumption 4). We further de-
compose the indirect effects for work and school into their root causes in italics: changes
in the indirect utility of neither-work-nor-school or changes in the indirect utility of the
other activity and the complementarity between the two activities.

Panel A of Table 9 shows the decomposition assuming γ̃0 = supG = −0.00356. In this
scenario, the direct effect of GDL laws on the utility of schoolgoing is restricted to be 0, so
the total effect must come entirely from the indirect channels. The decomposition in this
scenario shows that only 15% of the total schooling effect is due to changing work access
or complementarity effects. The effect of GDL laws on schoolgoing is almost entirely
due to a reduction in the utility of neither-work-nor-school. In contrast, the total effect of
GDL laws on teen employment is entirely attributable to a direct effect, with only a small
countervailing indirect effect reflecting the complementarity between school and work.
Similarly, most of the total effect of GDL laws on neither-work-nor-school is through the
direct channel.

Panel B of Table 9 instead assumes γ̃0 = inf G = −0.00554. In this scenario, the direct
effects of GDL laws on labor force participation and school enrollment are, by assump-
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tion, exactly equal. At this lower bound assumption, the impact of GDL laws on the util-
ity of schoolgoing generates a direct effect of -0.92pp, but this is counteracted by a large
indirect effect, again predominately due to the reduction in the utility of neither-work-
nor-school. A much smaller portion (41%) of the total effect is due to the indirect channel
stemming from reduced access to work and the declining complementarity between work
and school. The decomposition of the total effect of GDL laws on teen employment is sim-
ilar to that in Panel A, with only a slightly larger indirect effect due to schoolgoing. The
direct effect on neither-work-nor-school is quite large in this scenario.

In summary, the reduced access to employment created by GDL laws can explain be-
tween 15% and 41% of the total observed increase in teen schoolgoing. Given the avail-
ability of alternative modes of travel to school, we view γ̃0 as being closer to the scenario
in Panel A of Table 9 than that of Panel B (which assumes negative direct effects on school-
ing of equivalent size to those on work). At this upper end, employment effects account
for only 15% of the total impact of GDL laws on enrollment. At the less plausible lower
end, employment effects account for 41% of the total impact of GDL laws on enrollment.
In either scenario the majority of the total effect of the GDL policy on schoolgoing is at-
tributable to the reduced utility from the neither-work-nor-school option.

We can also use the model to understand heterogeneity in the impacts of the policy.
Figure 5 shows the effect of GDL laws on 16-year-old employment conditional on the
quantile of eAi , which we interpret as the teen’s underlying labor force attachment. There
is no effect on those below the 43th percentile of eAi ; they are inframarginal with respect
to the GDL policy and employment. However, there are substantial disemployment ef-
fects of up to 2.8pp for 16-year-olds between the 60th and 80th percentile of eAi . Among
this group, roughly half are in the labor force absent GDL laws (as indicated by the bot-
tom panel of Figure 5). This suggests that GDL effects on employment are concentrated
among teens who are otherwise relatively inclined to work. Moreover, the teens whose
employment decisions are most impacted by GDLs (at the 80th percentile of eA) are, on
average, at the 34th percentile of schoolgoing attachment, which is well away from the
dropout threshold.53 That is, the employment effects are concentrated on teens who are
inframarginal regarding schoolgoing.

These results demonstrate how the model can be used to clarify the channels by which
interventions in one activity spill over onto other activities; it rationalizes unintended con-
sequences and provides a framework to think about when they might occur. We find that

53That is, F−1(E[eB |eA : F−1(eA) = 0.8]) = 0.344.
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Figure 5: Heterogeneous GDL Effects on Employment

GDL laws restricting access to non-school activities have large spillover effects on school-
going. However, because we find that teens do not treat employment as a substitute for
schooling, restricting access to work is not a primary source of unintended consequences
on high school dropouts. Thus, future policies that specifically target non-school, non-
work activities would likely preserve the reduction in dropouts without inducing a neg-
ative effect on teen employment. In contrast, policies aimed at increasing or decreasing
teen employment are unlikely to have large unintended effects on educational attainment.

7 Conclusion

We interact graduated driver licensing and compulsory schooling laws to study the ef-
fects of mobility restrictions on schooling and employment outcomes for 16-year-olds in
the United States. GDL laws were adopted by many states in the late 1990s, before the
gradual ratcheting up of minimum legal dropout ages in the 2000s. This created a win-
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dow of time during which teen automobility was restricted but when teens could choose
to drop out of school. We use this window to determine whether mobility restrictions
increase or decrease school-leaving in a setting in which students still have the option to
leave school.

A robust set of results indicate that GDL laws—which restrict teen mobility—actually
decrease high school dropout by about 1.15pp (a 30% reduction from the mean), but only
in settings in which school-leaving is a legal option. This potentially surprising result
contrasts with evidence from large, middle-income cities that transit expansions increas-
ing school access improve educational outcomes (Dustan and Ngo 2018; Asahi and Pinto
2022; Alba-Vivar 2024). Our results instead suggest that access to other activities may
have decreased even more than access to school in the U.S. setting, leading to substitu-
tion towards schooling. To this end, we estimate the effect of GDL laws on teen labor
force participation and find that these laws led to a 1.76pp (7.5% at the mean) reduction
in 16-year-old labor force participation.

We turn to a structural model of multiple activity choice to help interpret these results.
The model has its own set of identification and interpretation challenges, and our discus-
sion of these may be useful for others combining policy analysis with structural modeling.
The model separates the direct effects of the policy from indirect channels (through sub-
stitution or complementarity effects). Under reasonable assumptions, we find that the
indirect impacts of GDL laws on schooling are not due to decreased access to work, but
likely reflect decreased access to activities that are neither work nor school. This accords
with the literature on GDL laws and risky behaviors.

Teen mobility restrictions offer a classic economic example of trade-offs in policy de-
sign. While the motivation for GDL laws was to increase teen safety, they had a number
of other effects on teen behavior. We find an additional benefit on schoolgoing, contribut-
ing to educational attainment. However, GDL laws also decreased teen work, which may
itself have additional positive or negative consequences in the long run. Our decompo-
sition of the total effects of GDL laws into direct and indirect channels offers important
insight for future policy design. Namely, that policies limiting teen mobility might pre-
serve the benefit to educational attainment, while avoiding the negative effect on teen
employment by targeting access to non-work, non-school activities.
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Appendices

A GDL Laws and Teen Driving

To verify that GDL laws had a binding effect on teen automobile use, we estimate the
effect of GDL roll-out on a proxy for driving.54 We use the rate of fatal car accidents in-
volving a teen driver as a proxy for the prevalence of teen driving by linking the GDL
laws to data from the U.S. Department of Transportation’s Fatality Analysis Reporting
System (FARS). FARS is a nationwide census of all fatal injuries suffered in motor vehi-
cle crashes and provides data on the location and timing of the accident as well as the
involved drivers’ birth-years.

We collapse each year of FARS data into state-by-age-of-driver bins and calculate the
number of car accidents involving a fatality for each bin. To convert these accident counts
into rates, we use data from the National Cancer Institute’s Surveillance, Epidemiology,
and End Results (SEER) dataset, which includes estimates of year-by-age populations for
every county. This allows us to create state-, year-, and age-specific measures of the fatal
car accident rate. An advantage of this outcome is that FARS contains the universe of fatal
car accidents in the United States over our entire sample period and includes all persons
involved in accidents that result in a fatality, not just fatalities themselves.

We estimate the effect of increasing the minimum full-privilege driving license age on
age-specific accident rates using a two-way fixed effects model:

AccRate16,st = βGDLst +Ds +Dt + ϵst, (A.1)

where AccRate16,st is the count of fatal car accidents in which at least one driver was
aged 16 divided by the population aged 16 in state s in year t (in 1,000s). The primary
variable of interest is GDLst, which measures the minimum age at which teens can obtain
a full driver’s license with no restrictions. The model includes both state and year fixed
effects and is weighted by the population aged 16 in state s in year t. Standard errors are
clustered at the state level.

Column (1) of Table A.1 shows that a one-year increase in the minimum age at which
teens can receive an unrestricted driver’s license reduces the rate of fatal car accidents for

54Few data directly report teen automobile use, and none that we are aware of contain large samples of
teens across states and over time.

53



drivers aged 16 by 0.032 accidents per thousand 16-year-olds in the (state’s) population.
At the mean (0.259 fatal accidents per thousand population aged 16), this is equivalent to a
12% reduction. In column (2), we replace the continuous measure of unrestricted driving
age with an indicator variable that equals one if the minimum unrestricted driving age
is strictly greater than 16 (corresponding to the solid black line in Figure 1a). This yields
an even larger negative estimate of 0.07 accidents per thousand 16-year-old population,
indicating that teens are a statistically significant 27% less likely to be involved in a fatal
car accident when they cannot access an unrestricted driver’s license.

Table A.1: Effect of Minimum Driving Age on Fatal Car Accidents with 16-Year-Old
Drivers

Accidents per 1,000

(1) (2) (3)

Minimum Unrestricted Driving Age -0.032***
(0.011)

Min. Unres. Driving Age > 16 (year t-2) -0.013
(0.018)

Min. Unres. Driving Age > 16 (year t-1) 0.009
(0.014)

Min. Unres. Driving Age > 16 -0.070*** -0.022
(0.016) (0.015)

Min. Unres. Driving Age > 16 (year t+1) -0.038***
(0.012)

Min. Unres. Driving Age > 16 (year t+2) -0.018
(0.015)

Mean Outcome 0.259
Obs 1,400 1,400 1,200

Specifications include state and year fixed effects. Data are from FARS, are
collapsed to state-year cells, and cover 1990–2017. All specifications are
weighted by the total state population and standard errors are clustered at
the state level. * p<0.10, ** p<0.05, *** p<0.01

The results in Table A.1 indicate that the introduction of GDL laws significantly re-
stricted teen driving de facto. In column (3) we also include two leads and two lags of
the minimum driving age indicator variable as a test for whether we are merely picking
up trends in teen driving behavior. We find no evidence of pre-trends, however, there
does seem to be a slight delay in the timing of the effect on fatal accident rates. This result
provides a measure of confidence that we are conservatively assigning changes in GDL
laws to the effective year or the year prior.

These findings accord with previous work showing that the implementation of GDL
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laws decreased teen driving fatalities (Dee, Grabowski, and Morrisey 2005). While our
results likely reflect declines in teen driving, they may also capture changes in other mar-
gins of driving behavior, such as safety. However, Gilpin (2019) and Karaca-Mandic and
Ridgeway (2010) show that decreases in driving fatalities stem primarily from reductions
in teen driving rather than improvements in the quality of teen driving.55 When taken in
conjunction with our results, it appears that GDL laws did, in fact, restrict teen mobility.

55Relatedly, Severen and Van Benthem (2022) find that GDL laws do not appear to lead to long-run
reductions in driving. Bostwick (2018) uses changes in school start times to show that teen driving safety is
very responsive to outside factors, such as cognitive load and sleepiness as well as traffic congestion.
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B Additional Tables and Results

Table B.1: GDL Laws and Compulsory Schooling Laws in 1990 and Changes Thereafter
(through 2017)

Min. Unres. School-Leaving
State Year Driving Age > 16 Age ≤ 16

Alabama 1990 0 1
Alabama 2002 1 1
Alabama 2010 1 0
Alaska 1990 0 1
Alaska 2005 1 1
Arizona 1990 0 1
Arizona 2008 1 1
Arkansas 1990 0 0
Arkansas 2009 1 0
California 1990 0 1
California 1993 0 0
California 1998 1 0
Colorado 1990 0 1
Colorado 1999 1 1
Colorado 2007 1 0
Connecticut 1990 0 1
Connecticut 1997 1 1
Connecticut 2001 1 0
Delaware 1990 0 1
Delaware 1999 1 1
District of Columbia 1990 0 0
District of Columbia 2001 1 0
Florida 1990 0 1
Florida 1996 1 1
Georgia 1990 0 1
Georgia 1997 1 1
Hawaii 1990 0 0
Hawaii 2006 1 0
Idaho 1990 0 1
Illinois 1990 1 1
Illinois 2005 1 0
Indiana 1990 0 1
Indiana 1998 1 1
Indiana 2006 1 0
Iowa 1990 0 1
Iowa 1999 1 1
Kansas 1990 0 1
Kansas 1997 0 0
Kansas 2010 1 0
Kentucky 1990 0 1
Kentucky 1996 1 1
Kentucky 2014 1 0
Louisiana 1990 1 0
Maine 1990 0 0
Maine 2000 1 0
Maryland 1990 1 1
Maryland 2015 1 0
Massachusetts 1990 1 1
Michigan 1990 0 1
Michigan 1997 1 1
Michigan 2014 1 0
Minnesota 1990 0 1
Minnesota 2008 1 1
Minnesota 2014 1 0
Mississippi 1990 0 1
Mississippi 1997 0 0
Mississippi 2009 1 0

Min. Unres. School-Leaving
State Year Driving Age > 16 Age ≤ 16

Missouri 1990 0 1
Missouri 2001 1 1
Missouri 2010 1 0
Montana 1990 0 1
Nebraska 1990 0 1
Nebraska 1999 1 1
Nebraska 2005 1 0
Nevada 1990 0 0
Nevada 2005 1 0
New Hampshire 1990 0 1
New Hampshire 1998 1 1
New Hampshire 2010 1 0
New Jersey 1990 1 1
New Mexico 1990 0 0
New Mexico 2000 1 0
New York 1990 1 1
North Carolina 1990 0 1
North Carolina 1997 1 1
North Dakota 1990 0 1
Ohio 1990 0 0
Ohio 1999 1 0
Oklahoma 1990 0 0
Oklahoma 2005 1 0
Oregon 1990 0 0
Oregon 2000 1 0
Pennsylvania 1990 1 0
Rhode Island 1990 0 1
Rhode Island 1999 1 1
Rhode Island 2014 1 0
South Carolina 1990 0 0
South Carolina 2002 1 0
South Dakota 1990 0 1
South Dakota 2010 0 0
Tennessee 1990 0 0
Tennessee 2001 1 0
Texas 1990 0 0
Texas 2002 1 0
Utah 1990 0 0
Utah 1999 1 0
Vermont 1990 0 1
Vermont 2000 1 1
Virginia 1990 0 0
Virginia 1998 1 0
Washington 1990 0 0
Washington 2001 1 0
West Virginia 1990 0 1
West Virginia 2001 1 1
West Virginia 2014 1 0
Wisconsin 1990 0 0
Wisconsin 2000 1 0
Wyoming 1990 0 1
Wyoming 2005 1 1
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Table B.2: Summary Statistics by Group

Share Share Mean
Not in School In Labor Force Year N

School-Leaving Age > 16 (“Placebo” group) 0.037 0.215 2006 39,049
Min. Unres. Driving Age ≤ 16 0.030 0.286 1996 8,570
Min. Unres. Driving Age > 16 0.039 0.191 2009 30,479

School-Leaving Age ≤ 16 (“Treatment” group) 0.039 0.254 2006 36,147
Min. Unres. Driving Age ≤ 16 0.043 0.343 1996 11,273
Min. Unres. Driving Age > 16 0.038 0.222 2005 24,874

Table B.3: The Effect of Minimum Unrestricted Driving Age on 16-Year-Old Dropout (Lin-
ear Probability Model)

Not In School = 1

Diff-in-Diff Interacted Diff-in-Diff

(1) (2) (3) (4) (5) (6)

Min. Unres. Driving Age >16 (β1) 0.0078 0.0019 0.0009 0.0011 0.0023
(0.0063) (0.0041) (0.0038) (0.0039) (0.0049)

School-Leaving Age ≤ 16 (β2) 0.0207*** 0.0195***
(0.0049) (0.0047)

Min. Unres. Driving Age >16 -0.0119** -0.0110** -0.0110** -0.0165**
× School-Leaving Age ≤ 16 (β3) (0.0045) (0.0047) (0.0052) (0.0065)

Effect of GDL if -0.0173** -0.0101** -0.0101** -0.0099** -0.0142*
School-Leaving Age ≤ 16 (β1 + β3) (0.0075) (0.0045) (0.0047) (0.0049) (0.0073)

Fixed in Never
School-Leaving Age Always Always As Observed Yr. of GDL Switchers

>16 ≤ 16 Change Only

Controls Y Y - Y Y Y
Obs 24,298 22,269 75,196 75,196 75,196 46,567

Results from two-way fixed effects regression using CPS ASEC data from 1990–2017. All specifications
include state and year fixed effects. Controls in columns (1)–(2) and (4)–(6) are: gender; race/ethnicity indi-
cators; mother’s education; presence of father in household; receipt of SNAP benefits; state unemployment
rate; NPND laws; and state log real effective minimum wage. Column (5) also includes indicators for the
state minimum legal dropout age. Columns (1)–(2) replicate the probit estimates of Equation 2 shown in
Table 2. Columns (3)–(6) replicate the probit estimates of Equation 3 shown in Table 3. Standard errors are
clustered at the state level. * p<0.10, ** p<0.05, *** p<0.01
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Table B.4: The Effect of Minimum Unrestricted Driving Age on 16-Year-Old Labor Force
Participation (Linear Probability Model)

In Labor Force = 1

(1) (2) (3) (4)

Min. Unres. Driving Age >16 (β1) -0.0048 -0.0046 0.0014 -0.0171
(0.0119) (0.0127) (0.0125) (0.0134)

School-Leaving Age ≤ 16 (β2) 0.0329** 0.0284*
(0.0146) (0.0149)

Min. Unres. Driving Age >16 -0.0174 -0.0181 -0.0316** -0.0168
× School-Leaving Age ≤ 16 (β3) (0.0130) (0.0134) (0.0133) (0.0169)

Marginal Effect of GDL if -0.0222** -0.0227** -0.0302*** -0.0340**
School-Leaving Age ≤ 16 (β1 + β3) (0.0109) (0.0108) (0.0111) (0.0151)

Fixed in Never
School-Leaving Age As Observed Yr. of GDL Switchers

Change Only

Controls - Y Y Y
Obs 75,196 75,196 75,196 46,567

Results from two-way fixed effects regression using CPS ASEC data from 1990–2017.
These OLS estimates replicate the probit estimates shown in Table 7. All specifica-
tions include state and year fixed effects. Controls in columns (2)–(4) are: gender;
race/ethnicity indicators; mother’s education; presence of father in household; receipt
of SNAP benefits; state unemployment rate; NPND laws; and state log real effective
minimum wage. Column (3) also includes indicators for the state minimum legal
dropout age. Standard errors are clustered at the state level. * p<0.10, ** p<0.05, ***
p<0.01
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Table B.5: The Effect of Minimum Unrestricted Driving Age on Full-Time and Part-Time
Employment

Usually & Seeking Actual

Full Part Full Part
Time Time Time Time Other

(1) (2) (3) (4) (5)

Min. Unres. Driving Age > 16 (β1) -0.0051** 0.0014 -0.0038* 0.0077 -0.0077
(0.0023) (0.0091) (0.0018) (0.0070) (0.0061)

School-Leaving Age ≤ 16 (β2) 0.0123*** 0.0108 0.0073*** 0.0170 -0.0034
(0.0033) (0.0148) (0.0026) (0.0127) (0.0101)

Min. Unres. Driving Age > 16 -0.085*** -0.0056 -0.0053** -0.0091 0.0015
× School-Leaving Age ≤ 16 (β3) (0.0032) (0.0124) (0.0027) (0.0106) 0.0075

Effect of GDL if -0.0136*** -0.0041 -0.0091*** -0.0013 -0.0062
School-Leaving Age ≤ 16 (β1 + β3) (0.0037) (0.0092) (0.0031) (0.0088) (0.0062)

Mean of Outcome 1.6% 21.7% 1.0% 16.6% 5.7%
Obs 75,196 75,196 75,196 75,196 75,196

Average marginal effects from probit regression using CPS ASEC data from 1990–2017 cor-
responding to estimates of Equation 7 with indicators of types of employment as defined in
the CPS in place of LFPist. All specifications include state and year fixed effects. “Usually
& Seeking” refers to usual work and, if unemployed, desired work. “Actual” refers to actual
time worked (and “Other” includes unemployed). Standard errors are clustered at the state
level. * p<0.10, ** p<0.05, *** p<0.01
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Figure B.1: Teen Driving Restrictions & Minimum School-Leaving Age from 1990–2017
(population weighted)

(a) Graduated Driver Licensing Adoption

(b) Minimum Legal School-Leaving Age
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C Robustness Analyses

In this section, we address in more detail the literature that has identified biases in two-
way fixed effects estimation of staggered adoption difference-in-differences research de-
signs (e.g., de Chaisemartin and D’Haultfœuille 2020; Goodman-Bacon 2021; Sun and
Abraham 2021).

C.1 Event Study Analyses

In an event study model (such as Equation 1), Sun and Abraham (2021) describe how the
coefficient on a given lead or lag can be contaminated by effects from other time periods.
Furthermore, apparent pre-trends can arise solely from the presence of treatment effect
heterogeneity. In Section 4.1, we show that BJS estimates of Equation 1 are very similar to
the OLS estimates. In Figure C.1, we further show that the event study findings are robust
to the estimators proposed in Callaway and Sant’Anna (2021) and Sun and Abraham
(2021).

In panel (a), note that the estimates across the four different estimators are strikingly
similar. Although post-treatment point estimates are not statistically significant in every
year, there is a clear decline in the probability of 16-year-old dropout that coincides with
GDL law adoption. In panel (b), where we are estimating the placebo effect, the four es-
timators differ somewhat. However, none of these estimators points toward a significant
negative effect in the placebo states, which might lead to contamination in the interacted
difference-in-differences specifications. Also note that our repeated cross-sectional data
include many 2x2 difference-in-difference comparisons that are based on a small number
of observations. The estimators that calculate these 2x2 designs individually and then
aggregate can therefore be noisy and computationally difficult to calculate.

C.2 Interacted Difference-in-Differences Analyses

While several alternative estimators exist for the standard difference-in-differences model
with staggered adoption treatment, none (thus far) fits our setting of repeated cross-
sectional data with a placebo-style interacted difference-in-differences design where pol-
icy interactions can “turn on” and then “turn off” again. We therefore provide a battery
of tests to show that our main estimates do not suffer from the biases identified in the
new difference-in-differences literature.
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Figure C.1: The Effect of Minimum Unrestricted Driving Age on 16-Year-Old Dropout

(a) States with school-leaving age ≤ 16 (“Treatment”)
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(b) States with school-leaving age > 16 (“Placebo”)
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Coefficient estimates of θk and 95% confidence intervals in dashed lines from a linear probability model
using CPS ASEC data from 1990–2017. Controls include: gender; race/ethnicity indicators; mother’s
education; presence of father in household; receipt of SNAP benefits; state unemployment rate; NPND
laws; state log real effective minimum wage, state fixed effects, and year fixed effects. Standard errors are
clustered at the state level.
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One source of such bias highlighted by Goodman-Bacon (2021) is that the two-way
fixed effects estimator for a difference-in-differences identification strategy implicitly uses
previously treated cohorts to estimate counterfactual outcomes for later-treated cohorts.
This can be problematic if treatment effects are changing over time. Given that our data
covers 28 years and that there are changes in GDL laws over several years, we are able
to consider subsets of the full study window in order to probe whether our estimated
treatment effects are dynamic or static.

Specifically, we introduce two sample restrictions into the estimation of the probit
model in Equation 3. First, we remove states that are “always treated” in our study win-
dow (i.e., adopted a GDL law restricting full-privilege licenses to teens older than 16 prior
to 1997).56 This precludes long-run dynamic effects from early-adopter states from con-
taminating estimated effects. Second, we cut off the sample at earlier and earlier years,
targeting the 1997–2002 window when most states adopted GDL laws.

Table C.1: The Effect of Min. Unrestricted Driving Age on Dropout for a Limited Panel

Not In School = 1

Drop always-treated states &
Limit sample to years:

Full
Sample 1990-2017 1990-2012 1990-2007 1990-2002

(1) (2) (3) (4) (5)

Min. Unres. Driving Age >16 (β1) 0.0014 -0.0009 0.0010 0.0026 0.0031
(0.0040) (0.0041) (0.0032) (0.0036) (0.0070)

School-Leaving Age ≤ 16 (β2) 0.0191*** 0.0212*** 0.0244*** 0.0298*** 0.0280***
(0.0049) (0.0054) (0.0062) (0.0068) (0.0109)

Min. Unres. Driving Age >16 -0.0129** -0.0142** -0.0139*** -0.0154*** -0.0151*
× School-Leaving Age ≤ 16 (β3) (0.0052) (0.0056) (0.0051) (0.0056) (0.0086)

Effect of GDL -0.0115** -0.0151** -0.0129** -0.0128** -0.0120*
if School-Leaving Age ≤ 16 (β1 + β3) (0.0052) (0.0065) (0.0059) (0.0061) (0.0070)

Exclude Always Treated - Y Y Y Y
Obs 75,196 60,864 49,038 35,755 21,603

Average marginal effects from probit regression using CPS ASEC data. All specifications include
state and year fixed effects. Controls include: gender; race/ethnicity indicators; mother’s education;
presence of father in household; receipt of SNAP benefits; state unemployment rate; NPND laws; and
state log real effective minimum wage. Standard errors are clustered at the state level. * p<0.10, **
p<0.05, *** p<0.01

56Our data observation window begins in 1990, but no states adopted a new GDL law between 1990 and
1997.
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Table C.1 shows the results of these exercises. Column (1) replicates our preferred
specification (column (2) of Table 3) to aid comparison. Columns (2)–(5) drop any states
that are always treated during our study window (about 20% of observations). While
column (2) uses data over the full study window, columns (3)–(5) respectively omit the
five, ten, and fifteen most recent years of data. Results for all model estimates are rel-
atively constant across specifications, though they become less precise as more data are
omitted. The placebo effect (β1) remains close to zero, whereas the interaction effect (β3)
and total effect of GDL laws where dropouts are legal (β1+β3) both vary within relatively
narrow bands. There is a bit more variation in the CS effect (β2), but these estimates all
suggest that, if anything, our primary estimates are conservative relative to other sample
windows. The results in Table C.1 suggest that our main findings are not being driven by
long-run dynamics in the effects of GDL laws.

In a second test of the dynamism of GDL law treatment effects, we estimate a model
that includes indicators for bins of years in post-treatment time: 0–4, 5–9, 10–14, and
15+ years after GDL adoption. As before, we also drop always-treated units to avoid
contamination from long-run effects. Table C.2 reports the results of this “grouped” triple-
difference design. Estimates of β1 are stable and close to zero, providing further placebo
evidence that our research design and implementation identifies the effect of interest and
is not overly subject to dynamic contamination. Moreover, the total effects of GDL laws
in states without binding CS laws (β1 + β3) are fairly constant over time as well, further
suggesting that our estimates are not biased by treatment effect dynamism.

In our final robustness check, we recast our research design into a more compati-
ble framework to fit the imputation estimator of Borusyak, Jaravel, and Spiess (2021).
We make three major changes from our preferred specification. First, we disallow an
independent effect of GDL laws on schoolgoing when teens are not permitted to drop
out (when school-leaving age is >16). That is, we recast our interacted difference-in-
differences design as a more standard difference-in-differences design where the treat-
ment is the interaction of restricted driving laws and non-binding compulsory schooling
laws. Given the small, insignificant, and relatively precise estimates of β1 throughout our
analyses, we view this as a reasonable restriction on the estimation model.

Second, we assume a linear probability model. This is potentially consequential be-
cause our binary outcome variable has a mean that is very close to zero (only 3.8% of
16-year-olds drop out in our sample), a setting in which a linear probability model will
usually generate biased and inconsistent estimates. However, comparing the linear prob-

64



Table C.2: The Effect of Minimum Unrestricted Driving Age on 16-Year-Old Dropout
Over Time

Not In School = 1

Main Specification Effect Over Time
(1) (2)

Min. Unres. Driving Age >16 (β1) -0.0009
(0.0041)

0-4 Yrs Post 0.0007
(0.0044)

5-9 Yrs Post -0.0013
(0.0052)

10-14 Yrs Post -0.0021
(0.0079)

15+ Yrs Post 0.0044
(0.0102)

School-Leaving Age ≤ 16 (β2) 0.0212*** 0.0254***
(0.0054) (0.0068)

Min. Unres. Driving Age >16 -0.0142**
× School-Leaving Age ≤ 16 (β3) (0.0056)
0-4 Yrs Post -0.0157**

(0.0065)
5-9 Yrs Post -0.0068

(0.0046)
10-14 Yrs Post -0.0126**

(0.0059)
15+ Yrs Post -0.0181**

(0.0077)

Effect of GDL if -0.0151**
School-Leaving Age ≤ 16 (β1 + β3) (0.0065)
0-4 Yrs Post -0.0150**

(0.0061)
5-9 Yrs Post -0.0081

(0.0061)
10-14 Yrs Post -0.0147**

(0.0058)
15+ Yrs Post -0.0138

(0.0091)

Obs 60,864 60,864

Average marginal effects from probit regression using CPS ASEC data from 1990–2017.
All specifications include: gender; race/ethnicity indicators; mother’s education; pres-
ence of father in household; receipt of SNAP benefits; state unemployment rate; state
log real effective minimum wage; NPND laws; state and year fixed effects. Observa-
tions within states for which the minimum unrestricted driving age is always greater
than 16 during our sample are omitted. Standard errors are clustered at the state level.
* p<0.10, ** p<0.05, *** p<0.01
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Figure C.2: Prevalence of the “Interacted” Treatment over Time

ability model estimates in Table B.3 with the probit results in Table 3 suggests that this is
reasonable.

Third, the newly developed estimators that account for treatment effect dynamics in a
difference-in-differences model do not permit treatment to “turn on” and then “turn off”
again. Therefore, we must omit some data from our sample to account for the fact that
our interacted treatment (GDLst∗CSst) both turns on and turns off over time. Specifically,
in states for which the interacted treatment ever equals one (turns on), we drop all years
of data after treatment then turns off. Figure 1a reveals that states are gradually adopt-
ing GDL laws, and Figure 1b shows that they are also gradually restricting the ability of
16-year-olds to drop out. This implies that the interaction of restricted GDL laws and un-
restricted dropout legality typically comes into effect (turns on) for a period of time before
being blocked (turns off) by more restrictive compulsory schooling laws. To illustrate, the
solid black line in Figure C.2 plots the number of states for which the interacted treatment
is equal to one over time. Many states adopt GDL laws without restricting dropping out
between 1995 and 2001, but the number of states with this interacted treatment begins to
decline slowly through 2010 and more abruptly in 2013 and 2014.

We consider a model similar to Equation 3 that excludes the non-interacted GDLst
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term:

NotInSchoolist = β2CSst +
∑
k

βsk1[t− Es = k]

+X ′
iν + Z ′

stµ+Ds +Dt + ϵist, (C.1)

wherein Es is the first year that GDLst ∗ CSst = 1 in state s and the βsk are potentially
heterogeneous and dynamic treatment effects that, when aggregated, correspond to β3 in
Equation 3.57 If, as previously estimated, the true value of β1 is zero, then estimates from
Equation 3 and Equation C.1 should be very similar.

We apply the BJS imputation estimator, which is the most efficient linear unbiased es-
timator of any pre-specified weighted sum of treatment effects under the assumptions of
parallel trends and homoskedasticity, and has attractive efficiency properties under het-
eroskedasticity. This estimator recovers a well-defined ATT even under arbitrary treatment-
effect heterogeneity and dynamism.

Columns (5)–(7) of Table 3 in Section 4.3 show the results using the imputation esti-
mator. The model in column (5) omits all controls except CSst. Column (6) includes all
control variables (Xi and Zst). Column (7) omits never-treated units (all three columns
omit always-treated units) to test whether our results hinge on comparisons to states that
are subject to different trends than those that eventually adopt GDL laws. These esti-
mates are nearly identical to the probit results in Table 3. The standard errors, which are
conservative under treatment effect heterogeneity but exact if treatment effects are ho-
mogenous, are actually slightly smaller.58 These results imply that our main results are
robust to arbitrary treatment effect heterogeneity and dynamics.

D District-Level Dropout Analyses

To support the findings on teen education outcomes shown in Section 4, we collect school-
district level data on high school dropouts from the National Center for Education Statis-
tics’ (NCES) Common Core of Data (CCD). This data covers school-years from 1994 to
2009 and includes the combined dropout rate for grades 9-12 as well as several time-
varying measures of district-level student demographics and other characteristics. For a
smaller set of years (1994-2001) dropout rates are also reported separately for each grade

57They also correspond to β1 + β3 when aggregated because β1 here is assumed to be zero.
58See Borusyak, Jaravel, and Spiess (2021) for discussion of inference.
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9 through 12. Due to reporting inconsistencies, the data comprises an unbalanced panel
of 12,325 school districts over 16 school-years.

Because these data are aggregated to the district-by-grade level, we are not able to
implement our preferred interacted difference-in-differences identification strategy. Each
grade will include individuals who are of varying ages, some of whom might be restricted
by the state’s compulsory schooling laws while others within the same grade are not.
Thus, we analyze the effect of teen driving restrictions on high school dropout rates using
a difference-in-differences strategy, which we estimate with two-way fixed effects:

DropoutRatedst = βGDLst +X ′
dtν + Z ′

stµ+Dd +Dt + ϵdst, (D.1)

where DropoutRatedst ∈ [0, 1] is the high school dropout rate for school district d in state s

in year t. Table D.1 shows that the overall average high school dropout rate in our sample
is 3.5%, ranging from an average of 2.6% for 9th graders to 4.3% for those in the 12th
grade.

The primary variable of interest is GDLst, which measures the minimum age at which
teens can obtain a full (unrestricted) driver’s license. The vector Xdt includes time-varying
school-district level controls: percent of students eligible for free lunch; percent of stu-
dents White; number of full-time equivalent teachers; log of total expenditures per stu-
dent; and urbanization indicators. The variable Zst includes the state’s minimum school-
leaving age, log minimum wage, an indicator for “No Pass, No Drive” restrictions, and
3-month average unemployment rate. The model also includes both district and year
fixed effects. District fixed effects control for time-invariant characteristics of a school,
such as location and district membership. Because schools typically stay relatively fixed
in the income distribution of attendee families in the short and medium term, these also
control to some degree for socioeconomic differences in student populations. We estimate
Equation D.1 as a linear model and estimate standard errors clustered at the state level.

Column (1) of Table D.2 shows that a one-year increase in the minimum unrestricted
driving age leads to a 0.43pp reduction in high school dropout rates. This is equivalent to
a 13% reduction in the dropout rate when evaluated at the mean. In Column (2), we re-
place the continuous measure of unrestricted driving age with an indicator variable equal
to one if the minimum unrestricted driving age is greater than 16. Increasing the unre-
stricted driving age, and thus restricting teen mobility, is then associated with a 0.33pp
reduction in the high school dropout rate (a 10% reduction from the mean).

In columns (4)-(7), we estimate the effect of teen driving restrictions on dropout rates
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Table D.1: Summary Statistics on School Districts

Mean Std. Dev Min Max

High School Dropout Rates:

Grades 9-12 0.034 0.05 0 0.99
Grade 9∗ 0.026 0.05 0 1
Grade 10∗ 0.035 0.05 0 1
Grade 11∗ 0.041 0.05 0 1
Grade 12∗ 0.043 0.06 0 1

% of Students Free-Lunch Eligible 30.4 19.4 0 99.7
% of Students White 77.7 26.2 0 100
# of Full-time Equivalent Teachers 257 843 0 65,804
Expenditure per Pupil (in $1,000s) 10.1 5.71 0 283
Urbanization Category:

Large City 0.02 0.15 0 1
Mid-size or Small City 0.05 0.22 0 1
Suburb of Large City 0.16 0.37 0 1
Suburb of Mid-size or Small City 0.08 0.27 0 1
Large Town 0.02 0.15 0 1
Small Town 0.17 0.37 0 1
Rural - outside CBSA/MSA 0.39 0.49 0 1
Rural - inside CBSA/MSA 0.11 0.31 0 1

Minimum Unrestricted Driving Age 16.7 0.71 15 18
Minimum School-Leaving Age 16.8 0.91 16 18

Source: NCES Common Core Data linked to GDL and CS data; see text
for more details. This data comprises an unbalanced panel of 12,149 school
districts over the 16 years spanning 1994-2009 with a total 114,414 district-
year observations. *Dropout rates for each grade are available for only a
subset of years (1994-2001) and are based on a smaller sample of 45,407
district-year observations.

for each grade of high school separately. Because of reporting limitations, this restricts
our sample to years before 2002, limiting identifying variation to those states that were
relatively early adopters of GDL laws. Column (3) replicates the specification of Column
(2), but includes only years up to 2001 in the sample. The effect of raising the minimum
driving age to greater than 16 on overall high school dropouts is somewhat larger in
magnitude in this sub-sample, reducing dropouts by 0.44pp. Columns (4)-(7) show that
the effects of increasing the minimum driving age to over 16 are largest for 11th-grade
dropout rates (a 15% reduction from the mean). It is during 10th and 11th grade that
many teenagers obtained full-privilege licenses prior to GDL laws (as teens generally turn
16 during those years). These results indicate that imposing restrictions on teen mobility
leads to a sizable reduction in high school dropout rates of 10-15%.

69



Table D.2: The Effect of Minimum Unrestricted Driving Age on High School Dropout
Rates

Dropout Dropout Dropout Dropout Dropout Dropout Dropout
Rate Rate Rate Rate Rate Rate Rate

Grades 9-12 Grades 9-12 Grades 9-12 Grade 9 Grade 10 Grade 11 Grade 12

(1) (2) (3) (4) (5) (6) (7)

Min. Unres. Driving Age -0.0043***
(0.0011)

Min. Unres. Driving Age >16 -0.0033* -0.0044** -0.0025 -0.0047** -0.0060** -0.0056**
(0.0018) (0.0021) (0.0019) (0.0020) (0.0026) (0.0026)

Years in Sample 1994-2009 1994-2009 1994-2001 1994-2001 1994-2001 1994-2001 1994-2001
Mean Dropout Rate 0.034 0.034 0.036 0.026 0.035 0.041 0.042
Obs 114,043 114,043 44,735 44,166 44,246 44,366 44,623

All specifications include: % of public school students in the district eligible for free lunch; % of public school students who
are White; # of full-time equivalent teachers; log of total expenditures per student; indicators for the district’s urbanization
level; the state minimum legal dropout age; state unemployment rate; state minimum wage; NPND laws; and district and
year fixed effects. Standard errors are clustered at the state level. * p<0.10, ** p<0.05, *** p<0.01

E Details of the Model-Based Analysis

In this Appendix, we provide additional details about the model, estimation, and coun-
terfactuals that are too lengthy to be included in the main text of Section 6.

E.1 GHK Simulator

Our model is similar—but not identical—to a four-choice multinomial probit model. The
fundamental difference is that the idiosyncratic component of the AB choice (choosing
both work and school) is simply a sum of eA and eB. While this is a seemingly minor
change, it has one important consequence. As presented in Assumption 1, Ω is positive
definite matrix, therefore allowing for a Cholesky factorization of Ω (a Cholesky factor
is a lower triangular matrix L such that LL′ = Ω). However, if we were to represent
the (normalized) covariance matrix of idiosyncratic preferences in the usual way for a
multinomial probit, we would have:

ΩExtended =

1 ρσ 1 + ρσ

· σ2 σ2 + ρσ

· · σ2 + 1

 .

Unfortunately, ΩExtended is not generally positive definite and so Cholesky factorization of
ΩExtended may not be possible.
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The positive definiteness of the covariance matrix of idiosyncratic preferences has im-
portant implications for estimation. Lemma 1 shows that even though the implicit co-
variance matrix is ΩExtended, we can instead rely just on Ω and thus the model can be
estimated using a GHK (Geweke, Hajivassiliou, and Keane) simulator.59 This simulator
is advantageous because it is both fast and reasonably easy to implement, and results in
much smoother likelihood functions than accept-reject simulators. These properties are
computationally useful and also help ensure convergence.

Lemma 1. Under Assumption 1, the model (Equations 8–11) can be estimated with a GHK sim-
ulator.

Proof. To show that the model can be estimated with a GHK simulator is to show that the
model’s choice probabilities can be expressed in the following form:

Pr(ηk < κk)× Pr(ηk′ < κk′(ηk) | ηk = x) for k′ ̸= k,

where ηk and ηk′ are random variables distributed i.i.d. standard normal and κ are con-
stants that potentially depend upon realizations of η. The key feature is that each choice
probability can be written as multiplicatively separable probabilities in which the first
probability evaluates the unconditional probability of a single, i.i.d. random variable.
The proof will thus proceed in two steps, first showing that the model can be expressed
in terms of i.i.d. standard normal random variables, and second, showing that the choice
probabilities then take the above form.

Step 1: The Cholesky factorization of Ω is a matrix L such that LL′ = Ω. This gives

L =

(
1 0

c d

)
,

where c = ρσ and d =
√

σ2(1− ρ2). Thus, (eA, eB) d
= (η1, cη1 + dη2), where η1 and η2

represent i.i.d. standard normal variables. Rewrite the model in light of this equivalence

59For a detailed description of the GHK simulator, see Train (2009).
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in distribution (suppressing notation denoting individual i):

V (0, 0) = 0

V (1, 0) = V1 + η1

V (0, 1) = V2 + cη1 + dη2

V (1, 1) = V1 + V2 + Γ12 + (1 + c)η1 + dη2. (i.i.d. normal model)

Straightforward substitution of data and coefficients for V1, V2, and Γ show equivalence to
the primary model (Equations 8–11). Specifically, if V1 = αA+ γAGDLA

st+x′
istλ

A+ z′stπ
A+

fA(s, ξ)+ δAt , V2 = αB + γBGDLB
st+x′

istλ
B + z′stπ

B + fB(s, ξ)+ δBt , and Γ12 = Γ+ γΓGDLΓ
st,

then the models are equivalent.
Step 2: We now show that the choice probabilities from this i.i.d. normal model can

be derived in order to take advantage of the i.i.d. nature of the η1 and η2 variables. We
show this sequentially for each choice in the choice set. First, the probability of choosing
neither activity is:

Pr(∅) = Pr (V1 + η1 < 0 ∩ V2 + cη1 + dη2 < 0 ∩ V1 + V2 + Γ + (1 + c)η1 + dη2 < 0)

= Pr(η1 < −V1) · Pr (V2 + cη1 + dη2 < 0 ∩ V1 + V2 + Γ + (1 + c)η1 + dη2 < 0 | η1 < −V1)

= Pr(η1 < −V1) · Pr
(
η2 <

min {0,−(V1 + Γ + η1)} − V2 − cη1
d

| η1 < −V1

)
= Φ(−V1)

∫ −V1

−∞
Φ

(
min {0,−(V1 + Γ + η1)} − V2 − cη1

d

)
ϕ(η1)dη1,

where ϕ and Φ represent the standard normal p.d.f. and c.d.f., respectively, and Γ = Γ12

for ease of exposition. Next, the probability of choosing work only is:

Pr(A) = Pr (0 < V1 + η1 ∩ V2 + cη1 + dη2 < V1 + η1 ∩ V1 + V2 + Γ + (1 + c)η1 + dη2 < V1 + η1)

= Pr(η1 > −V1)

· Pr (V2 + cη1 + dη2 < V1 + η1 ∩ V1 + V2 + Γ + (1 + c)η1 + dη2 < V1 + η1 | η1 > −V1)

= Pr(η1 > −V1) · Pr
(
η2 <

min {V1 + η1,−Γ} − V2 − cη1
d

| η1 > −V1

)
= (1− Φ(−V1))

∫ ∞

−V1

Φ

(
min {V1 + η1,−Γ} − V2 − cη1

d

)
ϕ(η1)dη1.
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Next, the probability of choosing the school activity only is:

Pr(B) = Pr (0 < V2 + cη1 + dη2 ∩ V1 + η1 < V2 + cη1 + dη2

∩V1 + V2 + Γ + (1 + c)η1 + dη2 < V2 + cη1 + dη2)

= Pr (0 < V2 + cη1 + dη2 ∩ V1 + η1 < V2 + cη1 + dη2 ∩ V1 + Γ + η1 < 0)

= Pr(η1 < −V1 − Γ) · Pr (0 < V2 + cη1 + dη2 ∩ V1 + η1 < V2 + cη1 + dη2 | η1 < −V1 − Γ)

= Pr(η1 < −V1 − Γ) · Pr
(
η2 >

max{0, V1 + η1} − V2 − cη1
d

| η1 < −V1 − Γ

)
= Φ(−V1 − Γ)

∫ −V1−Γ

−∞

(
1− Φ

(
max{0, V1 + η1} − V2 − cη1

d

))
ϕ(η1)dη1.

And, finally, the choice probability for both activities is:

Pr(AB) = Pr (0 < V1 + V2 + Γ + (1 + c)η1 + dη2∩

V1 + η1 < V1 + V2 + Γ + (1 + c)η1 + dη2∩

V2 + cη1 + dη2 < V1 + V2 + Γ + (1 + c)η1 + dη2)

= Pr (0 < V1 + V2 + Γ + (1 + c)η1 + dη2∩

V1 + η1 < V1 + V2 + Γ + (1 + c)η1 + dη2∩

0 < V1 + Γ + η1)

= Pr(η1 > −V1 − Γ)·

Pr (0 < V1 + V2 + Γ + (1 + c)η1 + dη2∩

V1 + η1 < V1 + V2 + Γ + (1 + c)η1 + dη2 | η1 > −V1 − Γ)

= Pr(η1 > −V1 − Γ) · Pr
(
η2 >

max{−(V1 + η1), 0} − V2 − Γ− cη1
d

| η1 > −V1 − Γ

)
= (1− Φ(−V1 − Γ))

∫ ∞

−V1−Γ

(
1− Φ

(
max{−(V1 + η1), 0} − V2 − Γ− cη1

d

))
ϕ(η1)dη1.

Thus, the choice probabilities can be written as multiplicatively separable probabilities
in which the first probability evaluates the unconditional probability of a single, i.i.d.
random variable.

Although the algebra is somewhat cumbersome, there is no significant additional
computational cost beyond what is used when estimating a typical (normalized) trino-
mial probit model. The primary differences with a trinomial probit are that (i) there is
one additional choice probability and (ii) the conditional probabilities contain non-linear
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functions of the conditioning random variable.
The advantage of the GHK simulator over simply estimating directly from draws of

(eA, eB) is that the GHK simulator preserves continuity in one of the dimensions of the
random variable. That is to say, the unconditional probability in the above choice proba-
bilities need not be simulated, and so can be smoothly evaluated via standard numerical
means. Simulation needs to be undertaken only for the conditional probabilities. This
smoothing greatly enhances the performance of optimization routines at finding maxima.

E.2 Estimation Details

The likelihood function for individual i, given that i chooses c ∈ C is:

P c
i (wi;ϑ, σ, ρ) =

∫
1 [Vi(c, wi;ϑ, e) ≥ Vi(c

′, wi;ϑ, e),∀c′ ∈ C] f(e;σ, ρ)de,

where wi collects data for i, ϑ collects all model parameters except σ, ρ, and γ̃0, and
f(e;σ, ρ) is the pdf of the bivariate random variable distribution N(0,Ω) evaluated at e.
Joint normality and multiple discreteness imply that choosing c does not generally cor-
respond to a rectangular subset of e and so analytic or fast computational functions are
unavailable to calculate P c

i (wi;ϑ, σ, ρ). We therefore approximate this term by simulating
the likelihood as

P̂ c
i (wi;ϑ, σ, ρ) =

1

R

∑
r

1 [Vi(c, wi;ϑ, er) ≥ Vi(c
′, wi;ϑ, er),∀c′ ∈ C] ,

where er is one of R draws for each i from f(e;σ, ρ).
We estimate the model using maximum simulated likelihood to recover all parameters

except γ̃0 (these parameters are sufficient to estimate total effects and to determine G given
Assumption 4). Specifically, we select

ϑ∗, σ∗, ρ∗ = argmax
∑
i

ωi ln P̂
c
i (wi;ϑ, σ, ρ),

where ωi are sample weights, via a multistep procedure the prioritizes finding σ, ρ, Γ, γk+ ,
αk, and πk first to limit dimensionality.

To simulate η1, we use Halton draws. We estimate the model by maximum simulated
likelihood in several steps, using Julia and the Optim package (Mogensen and Riseth
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2018). Because ρ and σ cannot take on all real values, we transform them as:

ρ̃ =
1

2
ln

(
1 + ρ

1− ρ

)
and σ̃ = ln(σ).

To facilitate estimation, we sometimes estimate a simple model which consists just of
those parameters shown in Table 8 as well as αA and αB. We also sometimes use a 20%
sample of our data, which we term small data.

Our optimization procedure consists of several steps:

1. Grid search over {ρ, σ} ∈ [−1, 1] × R++ using the simple model with R = 100

conditional on each {ρ, σ}, small data, and a Newton Trust Region algorithm. Select
{ρ, σ} that are local minima and do not lead to the other parameter values diverging.

2. Using each likelihood-minimizing {ρ̃, σ̃} from the grid search as starting values,
estimate the simple model including {ρ̃, σ̃} with R = 100 and R = 400, small data,
and a Newton Trust Region algorithm.

3. Set starting values for parameters in the full model that have a corresponding pa-
rameter in the simple model to the minimizing value from the prior step, and set all
other starting values to zero. Maximize the simulated likelihood of the full model
with R = 100, using small data, and the L-BFGS optimization routine, until a con-
vergence tolerance of 1e-4.

4. Set starting values as the minimizer from the prior step. Maximize the simulated
likelihood of the full model with R = 100, using all data, and the L-BFGS optimiza-
tion routine, until a convergence tolerance of 1e-8.

5. Set starting values as the minimizer from the prior step. Maximize the simulated
likelihood of the full model with R = 250, using all data, and the L-BFGS optimiza-
tion routine, until a convergence tolerance of 1e-8.

6. Examine the Hessian of our model to ensure positive definiteness. To do so, we
take three numerical approximations of the Hessian, invert each, take the diagonal
of each, and take the element-wise maximum of these three vectors. This vector is
not strictly positive, so we return to minimization.

7. Set starting values as the minimizer from Step 5. Maximize the simulated likelihood
of the full model with R = 250, using all data, and the L-BFGS optimization routine,
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until a convergence tolerance of 1e-10.

8. Examine the Hessian of our model to ensure positive definiteness. To do so, we
take three numerical approximations of the Hessian, invert each, take the diagonal
of each, and take the element-wise maximum of these three vectors. This vector is
strictly positive, so we take the element-wise square root of the vector, and treat that
as the standard error.

Steps 1 and 2 focus on the simple model to help ensure that we are finding a feasible
global maximum in our key structural parameters, and not being captured by other local
maxima or selecting initial values that lead to diverging parameter values (e.g., σ → ∞).
Newton-type algorithms are well suited to this smaller parameter space where the likeli-
hood is locally concave. Step 3 is meant to quickly get the full parameter vector to reason-
able starting values, hence the loose tolerance. Throughout Steps 3–5, we use an L-BFGS
algorithm because it is better suited to higher dimensions. Step 4 introduces all the data,
and Step 5 increases the number of simulations. Step 6 is a check on convergence, which
fails. Step 7 thus searches to a higher precision, which Step 8 checks convergence for and
returns standard errors.

E.3 Model Fit

Table E.1 assesses how well our estimated model explains the data by showing how often
a simulated choice matches the observed choice (averaged over 100 draws of (eAi , eBi ) for
each individual). The model slightly overestimates the probabilities of choosing neither
work nor school (0,0) and school only (0,1), while it slightly underestimates the proba-
bilities for work only (1,0) and the both work and school choice (1,1). Overall, summing
the diagonal components of Table E.1, the model correctly classifies those in the sample
62.23% of the time. Given the large number of individual characteristics that we do not
observe, we believe this to be a reasonable approximation.

E.4 Counterfactuals: Decompositions and Invariance

To decompose total treatment effects into their direct and indirect components, first let Pc

be functions of the data and estimated parameters that explicitly take the four vectors of

76



Table E.1: Model Fit

True P(0,0) True P(1,0) True P(0,1) True P(1,1)

Totals 2.454% 1.329% 74.271% 21.946%
Model P(0,0) 2.472% 0.083% 0.040% 1.908% 0.441%
Model P(1,0) 1.315% 0.036% 0.022% 0.943% 0.315%
Model P(0,1) 74.252% 1.877% 0.972% 56.188% 15.215%
Model P(1,1) 21.960% 0.458% 0.295% 15.232% 5.975%

This table shows the shares of each observed and simulated outcome of the
model using parameters shown in Table 8 averaged over 100 draws of errors
from a bivariate normal with a standard generator. The top row shows the ob-
served share of the population choosing each outcome, whereas the right col-
umn shows the average simulated shares that choose each outcome. The other
cells show the average shares of the population for each observed and simu-
lated outcome combination. Observations are weighted using sample weights.

GDL variables and the auxiliary parameter as arguments:

Pc(GDL0
st, GDLA

st, GDLB
st,GDLΓ

st, γ̃
0) =

n−1
∑
i

Ee1[Vi(c) ≥ Vi(c
′)|GDL0

st, GDLA
st, GDLB

st, GDLΓ
st, γ̃

0],

where n is the total number of observations. The right hand side captures the average
probability of an activity choice, given the GDL variables and γ̃0. In a slight abuse of
notation, let 0 or 1 be admissible arguments to the GDL arguments of Pk that reflect
setting all values to 0 or 1, e.g., P(0,1)(0, 0, 0, 0, γ̃0). The total shares of the population that
choose each activity are:

QA(·) = P(1,0)(·) + P(1,1)(·), QB(·) = P(0,1)(·) + P(1,1)(·), and Q∅(·) = P(0,0)(·)

for work, school, and neither work nor school, respectively.
The total effect of GDL laws captures the overall effect on each activity of increasing

the minimum unrestricted driving age from 16 or less to greater than 16. In the model, this
is captured by the differences in choices when GDLk

st = 1 compared to when GDLk
st = 0,

∀k, s, t:
θkTot(γ̃

0) = Qk(1, 1, 1, 1, γ̃0)−Qk(0, 0, 0, 0, γ̃0), ∀k ∈ {∅, A,B}.

The total effect is invariant to the value γ̃0, so θkTot = θkTot(γ̃
0),∀γ̃0, though this will not be

generally true for the decompositions. We simulate these model-based treatment effects
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(and their decompositions) to reflect the triple-difference design described in Section 3.
That is, for these simulations we set CS = 1 and thus CS ×GDL = GDL.

We next use the model to decompose each of the three total effects into their direct
and indirect channels. The direct effects reflect how each GDL component affects its
own activity, e.g., the effect of GDLA on working and of GDLB on school. As such, it is
governed by γ̃A for work, γ̃B for school, and γ̃0 for neither. Because GDL laws restrict
mobility, we expect that they will weakly reduce the value of each activity and that direct
effects will therefore be weakly negative. The indirect effects capture the consequences of
the GDL components on the other activities, i.e., of GDL0, GDLB, and GDLΓ on working,
or GDL0, GDLA and GDLΓ on schoolgoing.

We define these effects in a consistent manner that additively decomposes the total
effects into the two types of channels.60 Specifically:

Neither activity effects
θ∅Dir = Q∅(1, 0, 0, 0, γ̃0)−Q∅(0, 0, 0, 0, γ̃0) Direct effect on “neither” activity

θ∅Ind = Q∅(1, 1, 1, 1, γ̃0)−Q∅(1, 0, 0, 0, γ̃0) Indirect effect on “neither” activity

Employment effects
θADir = QA(0, 1, 0, 0, γ̃0)−QA(0, 0, 0, 0, γ̃0) Direct effect on employment

θAInd = QA(1, 1, 1, 1, γ̃0)−QA(0, 1, 0, 0, γ̃0) Indirect effect on employment

Schooling effects
θBDir = QB(0, 0, 1, 0, γ̃0)−QB(0, 0, 0, 0, γ̃0) Direct effect on schoolgoing

θBInd = QB(1, 1, 1, 1, γ̃0)−QB(0, 0, 1, 0, γ̃0) Indirect effect on schoolgoing

Table 9 includes in italics additional terms that focus on specific indirect channels to
aid interpretation. For example, the indirect effect of GDL laws on schooling decisions
consists of a component stemming from reduced access to employment and a component
stemming from reduced access to leisure (represented by the neither option).

60There are several reasonable ways to define these effects to reflect slightly varied counterfactuals. This
definition has the advantage of additivity.
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