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Abstract

Linear factor models are generally not identified. We provide sufficient conditions for

identification: under a sparsity assumption, we can estimate the individual loading vec-

tors using a novel rotation criterion that minimizes the ℓ1-norm of the loading matrix.

This enables economic interpretation of the factors. The assumption of sparsity in the

loading matrix is testable and we propose such a test. Existing rotation criteria are the-

oretically unjustified and perform worse in our simulations. We illustrate our method in

two economic applications.
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1 Introduction
Factor models are subject to a rotational indeterminacy, meaning that the individual factors
and loading vectors are only identified up to a rotation. Although this rotational indetermi-
nacy prohibits any economic interpretation of the estimated factors, even seminal papers in
economics (e.g., Stock and Watson 2002, Ludvigson and Ng 20091) often include a discus-
sion on the economic interpretations of individual factors, usually preceded by the caveat
that such an interpretation is theoretically unjustified. For example, Stock and Watson [2002]
remark,

“Because the factors are identified only up to a k × k matrix, detailed discussion of

the individual factors is unwarranted. Nevertheless, [...] Figure 1 therefore displays the

R2 of the regression of the 215 individual time series against each of the six empirical

factors [...] Broadly speaking, the first factor loads primarily on output and employment;

the second on interest rate spreads, unemployment rates and capacity utilization rates

[...].”

Similarly, Ludvigson and Ng [2009] state,

“Because the factors are identifiable only up to an r × r matrix, a detailed interpretation

of the individual factors would be inappropriate. Moreover, we caution that any labeling

of the factors is imperfect, because each is influenced to some degree by all the variables

in our large dataset and the orthogonalization means that no one of them will correspond

exactly to a precise economic concept like output or unemployment, which are naturally

correlated. Nonetheless, it is useful to show that the factors capture relevant macroeco-

nomic information. We do so here by briefly characterizing the factors as they relate to

the underlying variables in our panel dataset. Figure 1 shows that the first factor loads

heavily on measures of employment and production [...].”

We show that the assumption of sparsity in the loading matrix can solve this indetermi-
nacy, allowing a researcher to estimate how the individual factors affect the observed vari-
ables. Sparsity in the loading matrix is natural in many economic applications. It is implied
by the presence of local factors – factors that affect only a subset of the observables. Eco-
nomic examples include industry-specific shocks in a firm-level dataset.

Formally, our first result is that the true loading matrix Λ∗ achieves the minimum of the
ℓ0-norm across rotations of the loading matrix under a sparsity assumption. Intuitively this
states that any rotation of a sparse loading vector will be less sparse. However, a rotation

1The two papers have a combined citation count of more than 4,500 as of October 2022.
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criterion based directly on the sparsity pattern (ℓ0-norm) of the loading matrix will generally
be infeasible. Our main result then establishes that the true loading matrix Λ∗ also achieves a
minimum of the ℓ1-norm across rotations. Our proposed ℓ1-rotation criterion thus enables a
researcher to consistently estimate the individual loading vectors of any local factors. Our ro-
tation criterion is easy to implement in practice, and simply requires a

√
n-consistent estimate

of the loading space as a starting point. Despite the resemblance to regularized estimation
methods with an ℓ1-penalty, such as Sparse Principal Component Analysis, we emphasize
that there is no “shrinkage” involved in our estimator. Instead, we use the ℓ1-norm as a crite-
rion to select the most sparse loading matrix Λ from among a set of rotations. Applying our
criterion to both an international panel of daily stock returns and a panel of US macroeco-
nomic indicators enables us to identify individual loading vectors in both cases and to better
understand the economic structure of the data.

As a second contribution we introduce a criterion that can be used to determine whether
local factors are present in a given dataset. Our test effectively consists of counting the
number of “small” loadings in the most sparse rotation of the loading matrix, and comparing
it to the number of small loadings that could be expected if the true loading vector was non-
zero everywhere. Using our testing criterion, we find strong evidence for the existence of
local factors in both applications.

Despite the large literature on both factor models and sparsity, little work has been done
on the intersection of the two. Arguably one reason is that the sparsity pattern in the loading
matrix is generally not invariant to rotations of the loading vectors. Kristensen [2017] con-
siders adding an ℓ1-penalty to the estimation of the loading matrix via principal components
to induce sparsity in the loading matrix. However, even if the true loadings are sparse, the
principal components estimate an arbitrary rotation, which will generally not be sparse, even
in population. Bai and Ng [2013] provide an overview of the different normalizations com-
monly used in economics. A choice of normalization is equivalent to a choice of rotation for
the estimated factors. In practice, this choice often appears to be based on statistical conve-
nience rather than economic arguments. We argue that sparsity in the loading matrix, which is
both economically appealing and statistically testable, provides a more natural normalization
in many settings.

A related literature considers hierarchical factor models with a known group structure
(e.g., Boivin and Ng 2006, Moench et al. 2013, Choi et al. 2018). Unlike those papers,
we neither require the group structure to be known a priori, nor require a hierarchical model
in which each outcome belongs to only one group. Ando and Bai [2017], Uematsu and
Yamagata [2022] and Freyaldenhoven [2022] also do not require knowledge of the group
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structure a priori, but the focus of the first two papers is on estimation of the factor space,
and the focus of the second paper is on estimating the number of factors. Neither addresses
identification of individual factors.

While work on the estimation of sparse principal components in the statistics literature
(e.g., Jolliffe et al. 2003, Zou et al. 2006) is naturally related to the estimation of sparse fac-
tors, principal components by definition do not suffer from the same rotational indeterminacy.
For a Bayesian perspective, see Ročková and George [2016] and Kaufmann and Schumacher
[2019], who use sparse priors to encourage sparsity in the loading matrix.

A large and popular literature already exists that considers rotation criteria aimed to sim-
plify the loading matrix in factor models, going back to at least Carroll [1953] and Kaiser
[1958] (also see Katz and Rohlf 1974, Rozeboom 1991, Jennrich 2006).2 However, existing
rotation criteria are generally missing formal consistency results. To the best of our knowl-
edge, our ℓ1-rotation is the first rotation criterion that comes with theoretical guarantees to
recover the true loadings vectors under a sparsity assumption. We also find that our criterion
performs better than existing heuristics across our simulations.

The paper proceeds as follows. After setting up our model and fixing notation in Section
2, we discuss a simple example and give an intuitive discussion of our results in Section 3.
Section 4 includes our formal identification results. In Section 4.1, we show that the true
loading matrix Λ∗ is the unique minimum of the ℓ0-norm across rotations under exact spar-
sity, and introduce a testing criterion to determine whether local factors are present in a given
dataset. We further establish that Λ∗ is also a minimum of the ℓ1-norm across rotations. Sec-
tion 4.2 extends our results to allow for

√
n-consistent initial estimates of the loading space

and approximate sparsity in the true loading vectors. Section 5 provides Monte Carlo evi-
dence that supports our asymptotic results in finite sample. In Section 6, we apply our results
to a panel of individual stock returns as well as a panel of US macroeconomic indicators. In
the latter application we also illustrate how local factors can create the “illusion of sparsity”
(cf. Giannone et al. 2021) in forecast models.

2For example, the Varimax criterion (Kaiser 1958) is widely used across fields with more than 9000 citations
as of August 2021 and is included in many major statistical software applications (e.g., R, MATLAB and SAS).

3



2 Preliminaries
We use standard notation in the literature on factor models and assume X follows a factor
structure:

Xt
(n×1)

= Λ∗

(n×r)

Ft
(r×1)

+ et
(n×1)

∀t, or more compactly, X
(T×n)

= F
(T×r)

Λ∗′

(r×n)
+ e

(T×n)
, (1)

where Λ∗ = [λ∗
1•;λ

∗
2•; ...;λ

∗
n•]

′ = [λ∗
•1λ

∗
•2...λ

∗
•r] denotes the matrix of true factor loadings,

and F denotes the unobserved factors. We use the running indices s, t for the T observations,
i, j for the n variables, and k, l for the r factors throughout. To rule out pathological cases,
we will assume throughout that rank(Λ∗) = r.

Let tr(A) denote the trace of a matrix A. We use the Frobenius norm for matrices, such
that ∥A∥2 = tr(A′A) =

∑
i,j a

2
ij . Similarly, unless otherwise noted, ∥A∥1 and ∥A∥0 will

be entrywise (pseudo-)norms, such that, for instance, ∥A∥0 will count the non-zero entries
of a matrix A. We use the term generalized permutation matrix for a matrix P ∗ that can
be expressed as the product of an invertible diagonal matrix D and a permutation matrix P ,
with its dimension usually obvious from context. A set in a superscript of a vector x, always
denoted by a script letter (e.g., G), defines a vector xG such that xG

i = xi whenever i ∈ G
and xG

i = 0 otherwise. We write an ≍ bn for two sequences an, bn if an = O(bn) and
bn = O(an). We normalize the length of the true loading vectors throughout, and impose that∑n

i=1 λ
∗2
il = n for l = 1, . . . , r. Clearly, such a normalization of a loading vector λ∗

•k and its
corresponding factor Fk is immaterial.

Equation (1) is observationally equivalent for different rotations of the loadings and fac-
tors. To see this, let H denote an arbitrary nonsingular matrix. We can redefine Λ0 =

Λ∗(H ′)−1 and F 0 = FH . This rotation may well be oblique since H does not need to
be unitary, and we make no assumption that either the factors or the loading vectors are or-
thogonal. In our view, there is no reason a priori to believe that the underlying factors, and in
particular the loading vectors, are necessarily orthogonal.

Among others, Bai and Ng [2002] showed in their seminal paper that in factor models of
large dimensions, we can consistently estimate the number of factors under some regularity
conditions. We will therefore assume the true number of factors r to be known in the remain-
der of this paper.3 Throughout the paper, we assume the data has been centered, such that

3See also Ahn and Horenstein [2013] and Onatski [2010] for alternative ways to determine the number of
factors. Freyaldenhoven [2022] addresses the issue of estimating the number of factors under the presence of
local factors, affecting only a subset of the observables.
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E(Xi) = 0.4 All proofs and auxiliary lemmata are relegated to the Online Appendix.

3 Intuition
We start with a stylized example and an intuitive discussion of our proposed criterion.

3.1 A Stylized Example
To fix ideas, consider the following simple factor model with two factors for a vector xt of
dimension n = 207:

xt = λ∗
•1F1t + λ∗

•2F2t + et, t = 1, . . . , T, (2)

where λ∗
•k denotes the vector of loadings for factor k (denoted by Fkt), and et an idiosyn-

cratic noise component. We discuss the data-generating process in more detail in Section 5.
Suppose both factors are local with the structure of the loading matrix Λ∗ given by

Λ∗ =

λ∗
1:m1,1

0

0 λ∗
(n+1)−m2:n,2

 , (3)

where m1 = m2 = 120. Thus, 120 outcomes are affected by the first factor, and 120 out-
comes are affected by the second factor. Note that, with n = 207, some outcomes are affected
by both factors. For the non-zero entries we set λ∗

ik
i.i.d.∼ U(0.1, 2.9). Figure 1 visualizes the

resulting loading matrix Λ∗.

0 20 40 60 80 100 120 140 160 180 200
-2

0

2

0 20 40 60 80 100 120 140 160 180 200
-2

0

2

Figure 1: Illustration of true loading matrix Λ∗ for stylized DGP. Top panel depicts λ∗
•1, bottom panel

λ∗
•2. For each factor, the loadings associated with all 207 outcomes are depicted.

Under standard regularity conditions in the literature, it is well known that we can obtain

4While unnecessary from a theoretical standpoint, normalizing the scale of the observed variables may also
be appealing in practice. Adding a normalization step will not affect any of the conclusions that follow under
some mild conditions.
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estimates λ0
•1, λ

0
•2, such that

λ0
i1 = H11λ

∗
i1 +H12λ

∗
i2 + op(1)

λ0
i2 = H21λ

∗
i1 +H22λ

∗
i2 + op(1),

(4)

where H is an unknown nonsingular rotation matrix (e.g. Bai 2003).5 Thus, the estimates
λ0
•1 and λ0

•2 will in population be linear combinations of the true loading vectors λ∗
•1 and λ∗

•2.
We make the following two observations (for now ignoring the op(1) term in Equation (4)):

1. Observation 1: Linear combinations of sparse loading vectors are generally dense.
For an arbitrary linear combination of the true loading vectors λ0

•1 = H11λ
∗
•1 +H12λ

∗
•2

with H11, H12 ̸= 0 we will generally have λ0
i1 ̸= 0 for i = 1, . . . , n. Thus, even though

the true loading vector λ∗
•1 is sparse (cf. Figure 1), a generic estimate λ0

•1 will generally
have non-zero entries everywhere.

2. Observation 2: There exists a linear combination of the estimated loading vectors
that is sparse.
Since λ0

•1 and λ0
•2 are linear combinations of λ∗

•1 and λ∗
•2, it follows that λ∗

•1 and λ∗
•2

are also linear combinations of λ0
•1 and λ0

•2. In other words, there must exist weights
w1 and w2, such that λ∗

•1 = w1λ
0
•1 + w2λ

0
•2. It then also follows that, if λ∗

•1 is sparse,
there must exist a linear combination of λ0

•1 and λ0
•2 that is sparse.

Together, these two observations form the key insight of the paper: The sparsity pattern
in the loading matrix is not invariant to rotations and can be used to achieve identification.
We next illustrate our approach to identification in this stylized DGP. By construction, the
Principal Component estimator Λ0 will estimate a rotation H of the true loadings and factors
that satisfies λ0′

•1λ
0
•2 = 0 and F 0′

•1F
0
•2 = 0.6 Figure 2 depicts this estimate. In line with

Observation 1, the rotation matrix H inherent to the Principal Component estimator results
in an estimate of the loading matrix with no discernible sparsity pattern. Further, comparing
Figures 1 and 2, we conclude that neither of the estimated loading vectors closely resembles
λ∗
•1 or λ∗

•2.
Following Observation 2, we are next interested in identifying a linear combination of

λ0
•1 and λ0

•2 that is sparse. Because a rotation criterion that is directly based on the number of
non-zero elements will generally be infeasible (we return to this later), our proposed estimator

5We state this result more formally in Assumption 6.
6To compute the Principal Component estimator, we take the singular value decomposition X = UDV ′.

The leading r columns of V are used as λ0
•1, . . . , λ

0
•r.
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Figure 2: Illustration of Principal Component estimate Λ0 for stylized DGP. Top panel depicts λ0
•1,

bottom panel λ0
•2. For each factor, the loadings associated with all 207 outcomes are depicted.

takes Λ0 as a starting point and is equal to the rotation of Λ0 that minimizes the ℓ1-norm of the
loading vectors. Figure 3 depicts the value of ∥λ•k∥1 across rotations in the space spanned
by the Principal Component estimator Λ0. Specifically, it depicts how ∥λ•k∥1 = ∥w1λ

0
•l1 +

w2λ
0
•l2∥1 changes as we vary the weights w1, w2, under the restriction that w2

1 + w2
2 = 1.

A convenient way to enforce this restriction, and to depict the result graphically, is to let
[w1, w2] = [sin(θ), cos(θ)], and depict ∥λ•k∥1 as a function of the angle θ. This is depicted
in Figure 3.

Figure 3: Objective function across rotations in the space spanned by the initial estimate Λ0. Depicted
is ∥λ•k∥1 = ∥sin(θ)λ0

•l1 + cos(θ)λ0
•l2∥1 as a function of the angle θ.

We find two local minima at angles θ̃1 and θ̃2. The first minimum θ̃1 corresponds to
weights of [w1 w2] = [−0.70 0.71], and consequently an estimated loading vector of λ̃•1 =

−0.70λ0
•1+0.71λ0

•2. The second minimum θ̃2 corresponds to weights of [w1, w2] = [−0.84,−0.54],
and consequently a second estimated loading vector of λ̃•2 = −0.84λ0

•1 − 0.54λ0
•2. Com-

bining [λ̃•1, λ̃•2] = Λ̃, we obtain our proposed estimator for Λ∗. Λ̃ is depicted in Figure 4.
Comparing Figures 1 and 4, we conclude that Λ̃ is close to Λ∗, and that we are able to identify
the individual columns of Λ∗ using our proposed criterion.

Remark 1. Even though Λ̃ is close to Λ∗, we note that λ̃ik ̸= 0 for all i, k. This is expected
because the preliminary estimate Λ0 is subject to estimation error, and our method does not
impose any regularization. Having identified the correct rotation of Λ∗, we conjecture that
standard methods in regularized estimation, or even simple thresholding, can be used to fur-
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Figure 4: Illustration of Λ̃, the nonsingular “rotated” matrix with the smallest ℓ1-norm ∥Λ∥1 =∑
i,k |λik| for stylized DGP. Top panel depicts λ̃•1, bottom panel λ̃•2. For each factor, the loadings

associated with all 207 outcomes are depicted.

ther improve the estimate Λ̃ in practice. We leave this as an interesting avenue for future
research.

Alternatively, we can approximate the ℓ0-norm directly for each rotation by counting
the number of “small” loadings. Figure 5 depicts the number of small loadings λik across
rotations in the space spanned by the initial estimate Λ0, again as a function of the angle θ (we
formally define “small” in Section 4.1.2). The angles θ̃1 and θ̃2 in Figure 5 are those found
by minimizing the ℓ1-norm of the loadings and are identical to the local minima depicted
in Figure 3. While in this case, with just two factors, it is feasible to find a rotation that is
close to Λ∗ based on a visual inspection of the number of small loadings across rotations,
the discontinuities and large number of local extrema of this function make this approach
infeasible in higher dimensions (we expand on this in Online Appendix B).

Figure 5: Depicted is an approximation of the ℓ0-norm, Q0 =
∑n

i=1 1|λik|<1/log(n), where λ•k =
sin(θ)λ0

•l1 + cos(θ)λ0
•l2, as a function of the angle θ. Horizontal dashed red line represents critical

value for testing whether there are local factors in the data.

We also use Figure 5 to illustrate how one can use the estimate Λ̃ to test for the existence
of local factors in a given dataset. In Section 4.1.2 we introduce a test that effectively consists
of counting the number of small loadings in the most sparse estimated loading vector λ̃•k and
comparing it to the number of small loadings that would be expected if the true loading vector
was non-zero everywhere with normally distributed loadings. In Figure 5 our test corresponds
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to checking whether, for either of the angles θ̃1 and θ̃2, the number of small coefficients,
indicated by the blue line, is larger than a critical value, indicated by the horizontal red
dashed line. Based on Figure 5, we conclude that we successfully detect the presence of local
factors in this instance.7

3.2 Connection to Existing Rotation Criteria
A number of widely used rotation criteria exist aimed at simplifying the loading matrix, going
back to at least Carroll [1953] and Kaiser [1958]. These existing criteria usually use quartic
functions of the loadings and maximize a variant of the following criterion function Q(·) over
rotations of an initial estimate Λ0:

Q(Λ0R) = Q(Λ) =
r∑

k=1

k−1∑
l=1

(
n∑

i=1

λ2
ikλ

2
il −

c

n

n∑
i=1

λ2
ik

n∑
j=1

λ2
jl). (5)

If we consider only orthogonal rotations for now (which is equivalent to restricting R to be
orthonormal), (5) simplifies to

Q(Λ0R) = Q(Λ) =
r∑

k=1

 n∑
i=1

λ4
ik −

c

n

 n∑
i=1

λ2
ik

2
 . (6)

For example, setting c to 0, 1, and r/2, respectively, results in the Quartimax (Carroll 1953),
Varimax (Kaiser 1958), and Equamax (Saunders 1962) rotation criteria. Considering one
loading vector at a time, it becomes clear that these are closely related to maximizing ∥λ•k∥44 =∑n

i=1 λ
4
ik, subject to a constant ℓ2-norm. In contrast, we propose to minimize ∥λ•k∥1 =∑n

i=1|λik|, subject to a constant ℓ2-norm.
To gain an intuition for the difference between the two approaches (maximizing ℓ4, min-

imizing ℓ1), it is instructive to first consider maximizing the ℓ∞-norm and contrast this with
minimizing the ℓ0-norm across rotations. Intuitively, maximizing the ℓ∞-norm identifies the
rotation with the largest entry, while minimizing the ℓ0-norm essentially identifies the rotation
with the smallest entries. Minimizing the ℓ1-norm is a relaxation of minimizing the ℓ0-norm,
while maximizing the ℓ4-norm is a relaxation of maximizing the ℓ∞-norm. Our formal spar-
sity assumptions have direct implications for the behavior of the ℓ0- and ℓ1-norms, but not the
ℓ4- or ℓ∞-norms. We conjecture this is the reason why, under sparsity assumptions, formal

7In Online Appendix A, we depict the equivalent of Figure 5 if both factors affect all outcomes. There, our
testing criterion correctly suggests that no local factors are present in the data. Intuitively, if both λ∗

•1 and λ∗
•2

are non-zero everywhere, no linear combination of the two exists with a significant sparsity pattern.
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results have been difficult to achieve using existing rotation criteria that are quartic functions
of the loadings.

We discuss the connection between our proposed method and a variety of quartic criteria,
including criteria that result in oblique factor rotations (e.g., Hendrickson and White 1964),
further in Online Appendices B and D.

4 Identification

4.1 Under Exact Sparsity
We start by assuming an exact sparsity pattern in the loading matrix.

Assumption 1. For each factor k, we can partition the set of indices i = 1, 2, . . . , n into a

set of indices Ak with cardinality |Ak| and its complement Ac
k, such that:

(a) λ∗
ik ̸= 0 and

∣∣λ∗
ik

∣∣ < C ∀i ∈ Ak and a constant C.

(b) λ∗
ik = 0 ∀i ̸∈ Ak.

(c) ∃c > 0, such that
∣∣λ∗

ik

∣∣ > c ∀i ∈ Ak.

Parts (a)-(b) define Ak as the support of λ∗
•k, and we may think of Ak as the “active set”

for a given factor or loading vector: it collects the indices of all outcomes affected by that
factor. Some results additionally require Assumption 1(c), which will be relaxed in Section
4.2, where we allow for approximate sparsity in the loading matrix.

Assumption 2. Define Λ∗
•,−m as the n by (r − 1) submatrix of Λ∗ obtained by deleting the

mth column in Λ∗, and Az,−m as the support of a linear combination Λ∗
•,−mz for a given

(r − 1) vector of finite weights z and let bk(z) = max |B|, such that[
Λ∗Ak

•,−k

]B
z =

[
λ∗Ak
•,k

]B
. (7)

Then, there exists a set of factors F b, such that ∀Fk ∈ F b,
∣∣Ac

k ∩ Az,−k

∣∣ − bk(z) > 0 for

all z ̸= 0.

Different versions of the set F b will appear throughout the paper. F b approximately de-
fines a group of factors whose associated active sets are not supersets of another factor’s
active set (see the discussion below). We will generally be able to show identification for
the loading vectors of factors in varying versions of F b. For instance, in a two-factor model,
with a global factor affecting all outcomes and a local factor affecting only a subset of the
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outcomes, only the latter will be in F b. In such a model, the loading vector of the local
factor is identified, whereas the loading vector of the global factor is not. In practice, these
“local” factors, affecting only a subset of the outcomes, are often precisely those that are eco-
nomically interesting because we may find them interpretable. To ease notation we note that
Assumption 2 reduces to the following simple condition if r = 2 before further discussion.

Assumption 2’. Let b = max |B|, such that B ⊆ (A1 ∩ A2), and for all i ∈ B

c∗λ∗
i,1 = λ∗

i,2 (8)

for some constant c∗.

Then, there exists a set of factors F b, such that ∀Fk ∈ F b,
∣∣Ac

k ∩ Al

∣∣− b > 0 for l ̸= k.

Thus, b is defined as the size of the largest set of non-zero entries in the loading vectors
such that the two loading vectors are perfectly collinear on that set. The inequality above then
states that F1 ∈ F b if more than b outcomes are affected by F2, but not F1. This is slightly
more restrictive than the condition that A1 may not be a superset of A2.

To gain further intuition, consider the following three specific examples (with r = 2):

1. Suppose A1 ∩ A2 = ∅ (The two factors affect different, non-overlapping groups of
outcomes).
Then, b = 0, while

∣∣Ac
k ∩ Al

∣∣ = |Al| > 0. Therefore, A1 ∩ A2 = ∅ implies that
F1, F2 ∈ F b.

2. Suppose A2 ⊆ A1 (The second factor F2 affects a subset of the outcomes affected by
F1).
Then, Ac

1 ∩ A2 = 0, and it immediately follows that F1 ̸∈ F b. Thus, whenever Ak is a
superset of another active set Al , Fk cannot be a member of the set F b.

3. Suppose |Ak| ≍ n for k = 1, 2 as n → ∞, and λ∗
ik

i.i.d.∼ N(0, σ) if i ∈ Ak, and λ∗
ik = 0

otherwise.
Then, with probability 1, λi1

λi2
̸= λj1

λj2
for all i, j ∈ A1 ∩ A2, and therefore b = 1. It

follows that F1 ∈ F b if there are at least two outcomes affected by F2, but not F1.

More generally, a larger value of b means that the two loading vectors are more similar on
the intersection of their supports. Since we generally treat the factor loadings as parameters
rather than random variables, we rely on this high-level assumption without specifying b
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further. More primitive conditions can be derived if we treat the loadings as random instead.
For instance, under the third example above, we saw that b = 1 almost surely.

This intuition also holds for r ≥ 3. Define bk = maxzbk(z) as the size of the largest set
such that we can represent the (non-zero part of the) loading vector λ∗

•k as an exact linear
combination of the remaining loading vectors on this set. A small value for bk (e.g., bk =

r − 1) means this set is small, and intuitively states that the different loading vectors are
further from collinearity. The restriction

∣∣Ac
k ∩ Az,−k

∣∣ > bk(z) is then again slightly more
restrictive than the assumption that the active set for factor Fk is not a superset of any other
factor, and becomes more restrictive for larger values of bk.

Assumption 2 therefore implies a trade-off between the similarity in the supports of dif-
ferent loading vectors, and the similarity in the loadings on their joint support. The closer to
collinearity the loading vectors are on their joint support (corresponding to a large value of
bk), the more distinct we require their active sets to be to achieve identification. Throughout,
we refer to factors in the various versions of the set F b as local factors.

Remark 2. It will generally also be possible to identify the subspace spanned by a given
subset of loading vectors, even if their active sets are closely related, as long as they are
sufficiently distinct from the active sets of all other factors. In order not to further complicate
our notation, we will ignore this and simply consider such factors “unidentifiable” in the
remainder of this paper.

4.1.1 Minimizing the ℓ0-norm

Let R be a r × r matrix and consider the following minimization problem:

R̃ = argmin
R

∥Λ∗R∥0, s.t. R is nonsingular. (9)

Define Λ̃ = Λ∗R̃ as the rotation of Λ∗ corresponding to this minimum. We start with the
simplest case in which all factors are local:

Corollary 1. Suppose Assumptions 1(a)-(b) and 2 hold, and Fk ∈ F b for k = 1, . . . , r. Then

Λ̃ = Λ∗P ∗ for some generalized permutation matrix P ∗.

Corollary 1 is a direct consequence of Theorem 1 below. It states that, in a model with
only local factors, any rotation of the true loading matrix will be less sparse than the truth.
Thus the rotation with the highest degree of sparsity identifies the individual loading vectors,
up to an arbitrary relabeling of the factors and arbitrary scaling constants.

In most settings of economic interest, there will be at least some factor Fk, such that
Fk ̸∈ F b (for instance, a global factor). In such a case, suppose Fk ∈ F b for k = 1, . . . , r∗
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and Fk ̸∈ F b for k = r∗ + 1, . . . , r, and partition Λ∗ accordingly: Λ∗ = [Λ∗
•,1:r∗Λ

∗
•,r∗+1:r].

The partitioning of the factors as above is without loss of generality, since it can always be
achieved by a simple relabeling of the factors.

Theorem 1. Suppose Assumptions 1(a)-(b) and 2 hold. Then for every l = 1, . . . , r∗, there

exists an index k (which depends on l), such that R̃l,k ̸= 0 and R̃l′,k = 0 ∀l′ ̸= l.

Theorem 1 establishes the following: If the true DGP includes local factors (F b is non-
empty), the loading vectors for such local factors can be identified by maximizing the degree
of sparsity in the loading matrix across rotations. The intuition is that, of all possible rotations
of local factors, none will be as sparse as the truth, Λ∗. Note that Theorem 1 does not say
anything about factors that are not in F b. For instance, if there are global factors with a
corresponding loading vector that has non-zero entries everywhere, identification of such
factors based on a sparsity criterion will clearly be impossible.

Remark 3. Note that Theorem 1 still holds if we replace Λ∗ in (9) with any rotation of Λ∗,
Λ0 = Λ∗H , where H is a nonsingular matrix.

4.1.2 Determining the Existence of Local Factors

We next ask whether the existence of local factors is testable. To this end, define

L0(Λ) = max
k

(
n∑

i=1

1{|λik| = 0}).

Thus, for a loading matrix Λ, L0(Λ) is equal to the largest number of loadings equal to zero
across loading vectors λ•k, k = 1, . . . , r. We obtain the following result:

Proposition 1. Suppose Assumptions 1 and 2 hold. Further suppose that b∗ = maxk maxz bk(z) =

o(n), where bk(z) is defined in Assumption 2. Let Λ̃ be a solution to (9), and denote the

column-normalized version of Λ̃ by Λ̆: λ̆•k =
λ̃•k

∥λ̃•k∥
. Then, as n → ∞,

a) L0(Λ̆) = o(n) if|Ak| = n for k = 1, . . . , r.

b) For any γ ∈ (0, 1), L0(Λ̆) ≥ γn if there exists a factor Fk with |Ak| < (1− γ)n.

Recall that Λ̃ represents the “most sparse rotation” in the space spanned by the true load-
ing matrix. Intuitively, Proposition 1 states that, if all factors affect all outcomes (|Ak| = n

for k = 1, . . . , r), even the most sparse rotation in the space spanned by the true loading ma-
trix will not have a significant sparsity pattern. On the other hand, if there exists a factor Fk
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for which at least a constant fraction of its associated loadings are equal to zero, then clearly
such a sparse rotation exists.

Thus, 1{L0(Λ̆) ≥ γn} can be used as a criterion to determine whether any factors are
present that affect less than (1− γ) of the outcomes.

Remark 4. While Proposition 1 assumes no estimation error and requires exact sparsity, we
show that it performs well in simulations in Section 5 and discuss its implementation in
practice below. Size and power derivations of our testing criterion can presumably be done
under additional assumptions on the distribution of the loadings (e.g., under normality, as in
the third example of the previous section). We leave this as an interesting avenue for future
research.

In practice, since generally none of the estimated loadings will be exactly zero, we use

1{L̂0(Λ̆)) ≥ γn}, where L̂0(Λ̆) = max
k

(
n∑

i=1

1{
∣∣∣λ̆ik

∣∣∣ < hn}). (10)

Thus, L̂0(Λ̆) is equal to the largest number of loadings smaller than the threshold hn across
the rotated loading vectors λ̆•k, k = 1, . . . , r.8

We propose the following tuning parameters, hn and γ:

• hn = 1
log(n)

, and

• γ = γ0 + γ̃ = γ0 +

(
p+ cαγ

√
p(1−p)

n

)
, where p = ϕ(hn)− ϕ(−hn),

where cαγ is a critical value for chosen significance level αγ , and ϕ(·) denotes the cdf of the
standard normal distribution.

The intuition for this choice of parameters is the following. Asymptotically, hn = op(1)

implies that γ̃ = 0 and thus γ = γ0, so that we are simply counting whether more than
the fraction γ0 of loadings is (close to) zero. For finite n, the additional term γ̃ reflects an
upper bound on the proportion of loadings one would expect to fall inside the set [−hn, hn] in
finite sample if the loadings λ∗

ik are normally distributed. Our simulations suggest that setting
γ0 = 0.03 and αγ = 0.05 works well.

8We reemphasize that counting the number of small loadings in an arbitrary rotation (e.g., using the Principal
Component estimator Λ0) would not work. In general, the number of small loadings will be small even under
sparsity in Λ∗ (cf. Figures 1 and 2). It is therefore crucial to first find the most sparse rotation Λ̃.
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4.1.3 Minimizing the ℓ1-norm

Minimizing the ℓ0-norm directly is infeasible in practice for two reasons. First, minimizing
the ℓ0-norm directly will generally be computationally prohibitive. One can compare this to
high-dimensional sparse linear regression models, where optimal subset selection is similarly
infeasible. On the other hand, a vast body of literature exists documenting both the theoretical
and practical appeal of using the ℓ1-norm instead as a regularization in linear regression
models (e.g., Bühlmann and Van De Geer 2011). We similarly propose to minimize the
ℓ1-norm of Λ to make our approach computationally feasible. Second, minimizing the ℓ0-
norm generally requires exact rather than approximate sparsity in the loadings. In fact, even
under exact sparsity of the true loading matrix, any estimation error in the initial estimate
of the loading space will generally mean that there are no exact zeros in any rotations of
the estimated loading vectors. We therefore turn our attention to the ℓ1-norm of the loading
matrix next.

Assumption 3. Let Vk denote the set of all linear combinations v•k of λ∗
•l, l = 1, . . . , r, such

that ∥v•k∥22 = n and λ∗
•k ⊥ v•k and define

βk(v•k) =

∣∣∣∣∣∣
∑
i∈Ak

|vik|1{λ∗
ikvik ≥ 0} −

∑
i∈Ak

|vik|1{λ∗
ikvik < 0}

∣∣∣∣∣∣ . (11)

Then, there exists a set of factors F exact, such that, ∀Fk ∈ F exact,

∥vA
c
k

•k ∥1 > βk(v•k) ∀v•k ∈ Vk. (12)

Assumption 3 is similar to Assumption 2, with F exact approximately defining a group of
factors whose associated active sets are not supersets of another factor’s active set. To again
ease notation we note that Assumption 3 can be simplified to the following if r = 2 before
further discussion. With two factors, v•1 = q1λ

∗
•1 + q2λ

∗
•2 for some constants q1, q2. Further,

by definition of A1, ∥v
Ac

1
•1 ∥1 = q2∥λ

∗Ac
1

•2 ∥1, a constant times the sum of the absolute values
of λ∗

2i on Ac
1. Intuitively, the expression in (12) then states that F1 ∈ F exact iff ∥λ∗Ac

1
•2 ∥1 >

1
q2
βk(v•k). Thus, Assumption 3 requires a lower bound on the total (absolute) value of the

loadings λ•2 outside of the set A1 for F1 to be in F exact.
To gain intuition for Assumption 3, we consider our three examples from earlier again

(with r = 2):

1. Suppose A1 ∩ A2 = ∅ (The two factors affect different, non-overlapping groups of
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outcomes).
Then, λ∗

•1 ⊥ v•1 implies v•1 = λ∗
•2, and thus β1(v•1) = β1(λ∗

•2) = 0. Further, note
that ∥λ∗Ac

1
•2 ∥1 = ∥λ∗

•2∥1. It follows from rank(Λ∗) = r that ∥λ•2∥1 > 0, and therefore
A1∩A2 = ∅ implies that (12) holds and F1 ∈ F exact. Clearly, the same reasoning can
be applied to F2. Therefore, A1 ∩ A2 = ∅ implies that F1, F2 ∈ F exact.

2. Suppose A2 ⊆ A1 (The second factor F2 affects a subset of the outcomes affected by
F1).
Then, λ∗Ac

1
•2 = 0, and it immediately follows that F1 ̸∈ F exact. Thus, whenever Ak is a

superset of another active set, Al, Fk cannot be a member of the set F exact.

3. Suppose |Ak| ≍ n for k = 1, 2 as n → ∞, and λ∗
ik

i.i.d.∼ N(0, σ) if i ∈ Ak, and λ∗
ik = 0

otherwise.
Then, it can be shown (see Online Appendix C) that βk(v•k) = Op(

√
n) and thus that

F1 ∈ F exact if
√
n = op(∥λ

∗Ac
1

•2 ∥1). Intuitively, this states that F1 ∈ F exact if more than
√
n outcomes are affected by F2, but not F1.

We further discuss our high-level Assumption 3, as well as low-level assumptions suffi-
cient for our results, in Online Appendix C.

In what follows, we will work with an initial rotation of Λ∗, rather than with Λ∗ directly.
We will denote this as Λ0 = Λ∗H , where H is nonsingular. Λ0 has the property that its
columns have equal length and are orthogonal, such that Λ0′Λ0

n
= I . While Λ0 is not unique,

clearly such a rotation always exists. Intuitively, one can think of Λ0 as the rotation of Λ∗

that is estimated by the Principal Component estimator, at this point ignoring any estimation
error. Importantly, Λ0′Λ0

n
= I implies ∥λ•k∥2 = ∥Λ0Υ∥2 =

√
n for any (r × 1) vector Υ

with ∥Υ∥2 = 1. When considering the l1-norm of λ•k for different linear combinations Υ, we
therefore hold the l2-norm of λ•k constant across those combinations. To this end, consider a
the following optimization problem:

min
R

∥Λ0R∥1 such that R is nonsingular and ∥R•k∥2 = 1 ∀k. (13)

Noting that ∥Λ0R∥1 =
∑r

k=1 ∥
∑r

l=1 λ
0
•lRlk∥1, we see that (13) is separable in k and consists

of k identical parts up to the nonsingularity constraint. We thus consider one part at a time:

min
R•k

∥
r∑

l=1

λ0
•lRlk∥1 such that R′

•kR•k = 1. (14)
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Defining R∗
•k as the vector that gives λ∗

•k = Λ0R∗
•k, we obtain the following result.

Theorem 2. Suppose Assumptions 1 and 3 hold and we have access to a rotation of the true

loading matrix, Λ0 = Λ∗H , where H is nonsingular and Λ0′Λ0

n
= I . If Fk ∈ F exact, the

minimization in (14) has a local minimum at R∗
•k.

Theorem 2 states that the ℓ1-norm of λ∗
k is a minimum of (14) if Fk is a local factor. Note

that any set of local minima of (14) for k = 1, . . . , r is also a local minimum of (13). By
imposing the additional constraint that R is nonsingular, we rule out that multiple columns in
R lead to the same λ∗

•k and ensure that any solution Λ̃ = Λ0R̃ to (13) spans the same space
as Λ0.

4.2 Under Approximate Sparsity and Estimation Error
Theorems 1 and 2 required exact sparsity, which is quite restrictive. We therefore next rede-
fine the sets Ak to allow for approximate sparsity in the loading matrix.

Assumption 4. For each factor Fk, we can partition the set of indices i = 1, 2, . . . , n into a

set of indices Ak with cardinality |Ak| and its complement, such that as n → ∞,

(a)
∑

i ̸∈Ak

∣∣λ∗
ik

∣∣ = O(
√
n).

(b) |Ak| > c0n for some c0 > 0.

(c)
∣∣λ∗

ik

∣∣ > c ∀i ∈ Ak and
∣∣λ∗

ik

∣∣ < C ∀i for constants 0 < c,C < ∞.

Assumption 4(a) relaxes the definition of Ak to allow for approximate sparsity. We may
still think of Ak as the active (or important) set for a given factor Fk, but Fk may now also
affect other outcomes, with Assumption 4(a) restricting how much. Assumption 4(b) can
be thought of as a pervasiveness assumption. Together with Assumption 4(c), it states that
each factor affects a constant fraction of all outcomes, which is commonly maintained in the
literature. For our main result (Theorem 3), we require access to a

√
n-consistent estimate

of the space spanned by Λ∗ and the ability to obtain such a
√
n-consistent estimate generally

implies that factors must be pervasive (Freyaldenhoven 2022).

Assumption 5. Let Vk denote the set of all linear combinations v•k of λ∗
•l, l = 1, . . . , r, such

that ∥v•k∥22 = n and λ∗
•k ⊥ v•k and define

βk(v•k) =

∣∣∣∣∣∣
∑
i∈Ak

|vik|1{λ∗
ikvik ≥ 0} −

∑
i∈Ak

|vik|1{λ∗
ikvik < 0}

∣∣∣∣∣∣ . (15)
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Then, there exists a set of factors F , such that, for any Fk ∈ F , and some cmin > 0 and

N < ∞, whenever n > N :

∥vA
c
k

•k ∥1 − βk(v•k) > cminn
3
4 ∀v•k ∈ Vk. (16)

Assumption 5 slightly strengthens Assumption 3 in order to accommodate non-zero en-
tries of λ∗

•k on Ac
k, with a trade-off similar to the one we observed in Assumptions 2 and

3.9

So far, we assumed access to an initial rotation of Λ∗, Λ0 = Λ∗H . In practice, we will
only have access to an estimate of such a rotation. We remain agnostic about where such an
initial estimate may come from but simply require

√
n consistency.

Assumption 6. We have access to an initial estimate Λ0 with Λ0′Λ0

n
= I , such that ∥λ0

ik −
λ∗
i•H•k∥ = Op(

1√
n
), where H is nonsingular and the elements in H−1 are bounded above by

some constant C < ∞.

A large literature exists detailing various conditions on the primitives of the model that
allows an estimate with this rate. An obvious candidate that achieves

√
n consistency under

some regularity conditions would be the Principal Component estimator (Stock and Watson
2002, Bai and Ng 2002, Bai 2003)10. This is the estimator we use in our simulations and
applications. The main result of the paper follows.

Theorem 3. Suppose n → ∞, Assumptions 4-6 hold, and Fk ∈ F . Then, there exists a local

minimum of (14) at R̄•k, with λ̄•k = Λ0R̄•k, such that

λ̄ik = λ∗
ik +Op(n

−1/4) (17)

and

1

n
∥λ∗

•k − λ̄•k∥2 = Op(n
− 1

2 ). (18)

Theorem 3 shows that the minimization problem in (14) can be used to consistently es-
timate the loadings (and the individual loading vectors) of local factors, even under approx-
imate sparsity and when allowing for estimation error in the initial estimate Λ0. Since the
number of elements in Λ∗ increases with n, Theorem 3 also establishes consistency of the

9In fact, the only difference between Assumptions 3 and 5 is the lower bound on the RHS of (16). We again
point the reader to Online Appendix C for further discussion of this high-level assumption.

10Also see Bai and Ng [2021] for a more detailed discussion of the rotation matrix H .
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estimated loadings in terms of an averaged norm (similar to the results in, e.g., Bai and Ng
2002, Ando and Bai 2017).

In Theorems 1, 2, and 3 we established identification for the loadings corresponding
to factors in F b,F exact, and F respectively. Before we conclude this section, we briefly
summarize the similarities and differences between these sets in a simple example. To this
end, suppose r = 2 and λik ∼ N(0, 1) if i ∈ Ak for k = 1, 2. We consider three different
cases:

1. Under exact sparsity, no estimation error of the loading space, and using the (infeasible)
rotation of Λ that minimizes the ℓ0-norm:
λ∗
•k will be identified if

∣∣Ac
k ∩ Al

∣∣ > 1.

2. Under exact sparsity, no estimation error of the loading space, and using the rotation of
Λ that minimizes the ℓ1-norm:
λ∗
•k will be identified if

∣∣Ac
k ∩ Al

∣∣ > C
√
n for all C < ∞.

3. Under approximate sparsity, a
√
n-consistent estimate of the loading space, and using

the rotation of Λ that minimizes the ℓ1-norm:
λ∗
•k will be identified if

∣∣Ac
k ∩ Al

∣∣ > cminn
3
4 for some cmin > 0.

The last case is the most relevant in practice. Since it uses the ℓ1-norm, it is feasible to
implement, and it allows for both estimation error in an initial estimate of the loading space
and approximate sparsity. The “price to pay” to still guarantee identification is that we need
the active sets A1 and A2 to be more different compared to, for instance, the infeasible setup
in the first case.

Theorem 3 suggests the following simple two-step algorithm to consistently estimate any
loading vectors that correspond to local factors:

1. Obtain a
√
n-consistent estimate Λ0 that forms an orthonormal basis of the loading

space (e.g. by extracting the leading r principal components).

2. Find the rotation R̃ that minimizes the l1-norm of the loadings:

min
R

∥
r∑

l=1

λ0
•lRlk∥1 such that R′

•kR•k = 1, R nonsingular. (19)

By Theorem 3, if there are local factors present in the data, their true loading vectors will be
(close to) a local argmin of (19).
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Remark 5. The optimization problem in (19) is still computationally challenging as it in-
volves finding multiple minima of a non-convex function over the surface of an r-dimensional
sphere. In practice, we translate the problem into spherical coordinates, which turns the con-
straint optimization in (19) into an unconstrained optimization problem that is much easier to
solve.

We discuss this transformation, and our algorithmic implementation in general, in more
detail in Online Appendix E.

Remark 6. Throughout, all results concerned the loadings Λ∗. A natural question is to what
extent our consistency results for the individual loading vectors translate into consistency
results for the corresponding individual factors realizations. Perhaps surprisingly, even the
local factors will generally not be identified. In other words, knowing a loading vector λ∗

•k,
and thus how the corresponding factor Fk affects all outcomes, is not sufficient to identify the
corresponding factor realizations Fkt, t = 1, . . . , T , without further assumptions.

For intuition, suppose we were to form estimates for the factor realizations at each time
period by a cross-sectional regression of the outcomes on the estimated factor loadings, such
that

Ft = (Λ̃′Λ̃)−1Λ̃′Xt for t = 1, . . . , T. (20)

Intuitively, consistency of Fkt requires knowledge of all loading vectors λ∗
•k, k = 1, . . . , r.

However, a setting in which all factors are local (in which case the entire loading matrix Λ

is identified, such that Λ̃ ≈ Λ∗) appears unlikely in most economic applications. We also
conjecture that one could achieve identification of the individual factors under additional
restrictions (such as orthogonality of the factors or the loadings).

Remark 7. Our results establish identification for the loading vectors of the local factors in
F . In Section 6, we discuss some heuristics on how to determine which factors are in this
set. Formally identifying which loading vectors are identified would be another interesting
avenue for future research.

5 Simulations
This section presents results from Monte Carlo simulations to evaluate the performance of our
proposals in finite sample. We start by revisiting the baseline DGP from our stylized example
in Section 3.1 and provide some more details about this DGP. The factors Fk, k = 1, 2 are
generated jointly normal with a correlation of 0.3, unit variances, and are i.i.d. over time.
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The error terms have the following correlation structure:

eti = ρet−1,i + (1− ρ2)1/2vit,

vti = βvt,i−1 + (1− β2)1/2uit, uit
i.i.d.∼ N(0, 1),

with (ρ, β) = (0.3, 0.1), which Onatski [2010] argues are good approximations to many
financial datasets.

First, we test whether local factors are present. To this end, we simulate 2,000 realizations
of our baseline DGP. For each realization, we simulate new loadings in Λ∗. Using 1{L̂0(Λ̃) >

γn} to test for the presence of local factors, we successfully detect the existence of local
factors in all 2,000 simulation runs for this DGP.

Our next goal is to recover Λ∗. To summarize the performance of an estimator across
simulation runs, we use the cosine similarity between the columns in Λ∗ and an estimate Λ̂.
Because the factors can always be reordered, for each true loading vector λ∗

•l, we use the
maximum cosine similarity with any estimated loading vector to measure how closely we are
able to recover λ∗

•l. Formally, define the maximum cosine similarity MCl(Λ̂) between the
true loading vector λ∗

•l and an estimate Λ̂ as

MCl(Λ̂) = max
k

λ̂′
•kλ

∗
•l

∥λ̂•k∥∥λ∗
•l∥

for l = 1, . . . , r. (21)

Thus, a value of MCl close to one means that one of the estimated loading vectors λ̂•k,
k = 1, . . . , r, is close to λ∗

•l.
The maximum cosine similarity corresponding to Figures 1-4 in Section 3.1 is depicted

in the first two columns of Table 1. The first column confirms that the Principal Component
estimator does not successfully recover either of the two loading vectors. On the other hand,
consistent with Figure 4, our proposed estimator can successfully identify the true loading
matrix Λ∗. Because both factors symmetrically affect the same number of outcomes in our
baseline DGP, the two rows look similar. While λ∗

ik
i.i.d.∼ U(0.1, 2.9) for i ∈ Ak was chosen to

satisfy the upper and lower bounds assumed on Λ∗ in the previous section, we also consider
λ∗
ik

i.i.d.∼ N(1, 1) for i ∈ Ak in the third and fourth column of Table 1. Column 4 demonstrates
that changing the distribution of the loadings λik on Ak has no meaningful impact on our
results.

The previous results confirm that our proposed ℓ1-rotation and testing criterion work well
in our baseline DGP: we can reliably detect the presence of local factors, and can correctly
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For i ∈ Ak : λ∗
ik ∼ U(0.1, 1.9) λ∗

ik ∼ N(1, 1)

Estimator Λ̂ Λ0 Λ̃ Λ0 Λ̃

MC1 0.777 0.990 0.773 0.994

MC2 0.780 0.990 0.774 0.994

Table 1: Maximum cosine similarity MCl(Λ̂) across DGPs and estimators. Λ0 refers to the Principal
Component estimator, while Λ̃ represents our proposed rotation that minimizes the ℓ1-norm across all
rotations. Depicted are averages based on 2,000 realizations.
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Figure 6: Power curves of testing criterion L̂0 that tests whether all factors are global. Each line
corresponds to a different distribution of the non-zero loadings on Λ∗ and depicts the empirical rejec-
tion frequency for the null that all factors are global across 2,000 simulations as a function of p0, the
fraction of loadings that are equal to zero.

recover the sparsity pattern in the loading matrix, thereby identifying the individual loading
vectors. We next consider a variety of data-generating processes to approximate a range of
situations a practitioner might encounter in practice.

5.1 Results for a Variety of Data-Generating Processes
We start by varying the degree of sparsity in Λ∗. We use the criterion 1{L̂0(Λ̃) > γn}
introduced in Section 4.1.2 to determine whether local factors are present in the data. We
continue to use tuning parameters γ0 = 0.03 and αγ = 0.05. Figure 6 depicts the empirical
frequency with which L̂0(Λ̃) > γn when we vary the number of loadings that are equal to
zero in Λ∗. Λ̃ refers to the estimate for Λ∗ obtained by our proposed ℓ1-rotation.

We consider four variants of our baseline DGP. In DGP1, the fraction of loadings that is
equal to zero is p0 for both factors and λ∗

ik ∼ N(0, 1) if i ∈ Ak. In DGP2, the fraction of
loadings that is equal to zero is p0 for both factors and λ∗

ik ∼ N(1, 1) if i ∈ Ak. In DGP3,
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one factor affects all outcomes. The fraction of loadings that is equal to zero is p0 for the
second factor and λ∗

ik ∼ N(1, 1) if i ∈ Ak. In DGP4, the fraction of loadings that is equal to
zero is p0 for both factors and λ∗

ik ∼ U(0.1, 1.9) if i ∈ Ak.
Under DGP1, we achieve a size of 0.01, and correctly detect local factors in more than

95% of realizations if more than 16% of the loadings are equal to zero. With the non-zero en-
tries of Λ∗ less concentrated around zero in the remaining three DGPs, our test becomes more
conservative, and we obtain sizes of 0.00 for the remaining three DGPs. Similarly, a larger
fraction of zero loadings is generally necessary to reliably detect the existence of local fac-
tors using our test statistic in these DGPs. However, we conclude that our testing procedure
successfully detects the presence of local factors in DGPs with a significant sparsity pattern
in Λ∗: across all DGPs we can detect the existence of local factors in almost all realization
whenever at least one loading vector has more than 25% of its entries equal to zero.

Figure 7 illustrates how the power curve changes for varying sample sizes. It again depicts
the empirical rejection frequency (the fraction of simulations with which L̂0(Λ̃) > γn) as a
function of p0, the fraction of loadings that are equal to zero. The underlying DGP is DGP2,
with λ∗

ik ∼ N(1, 1) if i ∈ Ak. We set T = n, varying both n and T together.11 With
T = n = 150 our test detects the presence of local factors in more than 95% of realizations
when at least 18% of the loadings are equal to zero. As the sample increases, the performance
of our testing criterion improves further: With T = n = 500 our test detects the presence of
local factors in more than 95% of realizations when as little as 12% of the loadings are equal
to zero.

We next turn to the estimation of the individual loading vectors again, varying the degree
of sparsity in the loading matrix by varying the values of m1 = |A1| and m2 = |A2|. We
maintain that λ∗

ik
i.i.d.∼ N(1, 1), for i ∈ Ak. All other parameters remain unchanged from

our baseline DGP. The corresponding result is depicted in Figure 8. Figure 8 depicts how
well we are able to estimate the true factor loadings λ∗

1 and λ∗
2 as a function of m1 and m2.

Panels 8a and 8b depict the performance of the Principal Component estimator for λ∗
1 and

λ∗
2. Unsurprisingly, the maximum cosine similarities are generally significantly below one.

The exception to this are cases in which one factor is extremely weak. In such cases, the data
effectively has a factor structure with a single factor, there is no rotational indeterminacy, and
the sole strong factor is identified.

Panels 8c and 8d depict the maximum cosine similarity for our proposed estimate Λ̃. We
are able to separately identify the two loading vectors throughout most of the parameter space

11The results are qualitatively similar if we hold T fixed.
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Figure 7: Power curves of testing criterion L̂0 that tests whether all factors are global for different
sample sizes. Each line depicts the empirical rejection frequency for the null that all factors are global
across 2,000 simulations as a function of p0, the fraction of loadings that are equal to zero for both
factors. For all non-zero loadings, λ∗

ik ∼ N(1, 1).

using our ℓ1-criterion. The exception occurs in the regions of the parameter space where a
factor becomes either “global” or very weak. For example, along the right edge of Figure
8c, F1 affects all observables. Since only the loading vectors corresponding to factors in
F are identified, and clearly F1 ̸∈ F in this region, this is not surprising. On the opposite
side of Figure 8c only a handful of outcomes are affected by F1. λ∗

1 is therefore only weakly
identified, and our initial estimate of the loading space is poor, resulting in a maximum cosine
similarity less than one. We further conclude from panels 8c-8d that an identification failure
for one of the loading vectors does not imply identification failure for the other.

We next increase the size of the model and consider a DGP with (T, n) = (500, 300)

and r = 4, with a small amount of correlation between the factors. Specifically, let Ft ∼
N(0,ΣF ), i.i.d. over time, with

ΣF =


1.0 0.3 0.0 0.0

0.3 1.0 0.3 0.0

0.0 0.3 1.0 0.3

0.0 0.0 0.3 1.0

 .

The first factor in this DGP is “global,” while the remaining three are local to varying degrees.
Specifically, the 300-by-4 loading matrix Λ∗ has entries λ∗

ik
i.i.d.∼ N(1, 1) if i ∈ Ak, and λ∗

ik =

0 otherwise. The subsets Ak will be of varying size and dictate which variables are affected
by each factor k, with the sequence of group sizes given by {|Ak|}4k=1 = {300, 170, 96, 72}
for the four factors. The idiosyncratic component eit is created the same way it was in our
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(a) PC Estimator: MC1(Λ
0) (b) PC Estimator: MC2(Λ

0)

(c) Rotated Estimator: MC1(Λ̃) (d) Rotated Estimator: MC2(Λ̃)

Figure 8: Maximum cosine similarity of estimators with each of the true loading vectors λ∗
•k as a

function of the degree of sparsity in the loading matrix. mk refers to the number of non-zero entries
in the kth column of Λ∗. Depicted are averages over 500 realizations.

baseline DGP. Finally, we consider a variant of this DGP in which there is no exact sparsity,
but rather an approximate version thereof. Here, λ∗

ik
i.i.d.∼ N(0, 1

n
), for all i ∈ Ac

k.
First, we test for the existence of local factors. For both DGPs (exact and approximate

sparsity), our proposed testing criterion correctly detects the presence of local factors in all
simulation runs.

Figure 9 then uses a boxplot to visualize the performance of Λ0 and Λ̃. It depicts the max-
imum cosine similarity for each factor across 500 realizations. The data underlying Figures
9a and 9b has an exact sparsity pattern (λ∗

ik = 0 if i ∈ Ac
k). As expected, we do not consis-

tently recover the true loadings using the Principal Component estimator Λ0 (cf. Figure 9a).
On the other hand, Figure 9b depicts the similarity between the truth, Λ∗, and our proposed
estimate Λ̃. Since the first factor does not exhibit any sparsity, there is no information in the
ℓ1-norm that could help identify the corresponding loading vector. As a consequence, the
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(b) MCk(Λ̃) under exact sparsity
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(c) MCk(Λ
0) under approximate sparsity
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(d) MCk(Λ̃) under approximate sparsity

Figure 9: Each panel depicts the maximum cosine similarity of an estimator with all four of the
true loading vectors λ∗

•k. Λ0 denotes Principal Component estimator, while Λ̃ denotes estimate after
proposed rotation. The first factor is global, factors 2-4 are local. Boxplots based on 500 realizations.

similarity is below one, and identification fails for this loading vector. On the other hand, the
loading vectors of the three local factors exhibit maximum cosine similarities that are visually
indistinguishable from one in all realizations. Underlying Figures 9c and 9d is the variant of
our DGP with approximate sparsity in the loading matrix. Based on Figures 9c and 9d, the
above conclusions are unchanged. Our proposed estimator Λ̃ recovers the loading vectors
associated with the three local factors in all realizations.

In Online Appendix D, we compare the performance of our proposed estimator to a num-
ber of existing heuristics that are currently widely used to simplify the loading matrix, in-
cluding some of the quartic criteria discussed in Section 3.2. We find that our ℓ1-rotation
performs better than these alternative methods.

6 Applications
We next apply our rotation criterion to two economic applications in which factor models
have been widely used, chosen to capture two scenarios a practitioner might encounter. First,
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we consider a dataset of international stock returns. Because of the global nature of this
dataset, we expect the presence of region-specific factors in this dataset. We are therefore
interested in whether our method can detect these local factors and recover the geographic
structure of the data. Second, we consider a large panel of US macroeconomic indicators,
where it is less clear a priori whether local factors are present.

6.1 Identifying Common Shocks in International Asset Returns
Let Rit denote the return of asset i at time t. Following the Arbitrage Pricing Theory of
Ross [1976] and Chamberlain and Rothschild [1983], we assume that unexpected returns
xit = Rit − E(Ri) follow a factor structure, such that

xit = Rit − E(Ri) = λiFt + eit. (22)

We treat the common factors as unobserved, so we need to replace Ft and λi by their esti-
mates F̂t and λ̂i. In financial economics, these estimates are commonly obtained by Principal
Component analysis (Connor and Korajczyk 1986, Ludvigson and Ng 2007). We propose to
identify the individual loading vectors using our ℓ1-criterion.

Our dataset consists of daily returns for a large number of stocks from different parts of
the world. In particular, it includes individual stock returns for companies that were part of
the DAX30 (Germany), the FTSE100 (UK), the S&P100 (US), the CAC40 (France), or the
TA100 (Middle East) on April 23, 2015.12 In total, the data covers 272 stocks spanning 687
observations from 01/01/2011 until 03/20/2015. We determine the number of factors to be
eight using Bai and Ng [2002]’s Information Criterion, and will accordingly use r = 8 in
what follows.

To estimate the space spanned by these eight factors, we then estimate the leading eight
principal components. Unsurprisingly, we find that each of the eight principal components
loads on most of the 272 individual stocks. The estimated loadings corresponding to the
Principal Component estimator Λ0 can be found in Online Appendix Figure 11.

In contrast, Figure 10 depicts our proposed estimator Λ̃. The thin dashed lines separate the
geographical groups as described above, in the order of Frankfurt, London, New York, Paris,
and Tel Aviv. In contrast to the Principal Component estimate, we see that its loading vectors
are highly concentrated on a subset of outcomes.13 It reveals strong regional dependencies

12We further restrict the stocks in the TA100 to those with a weight by market capitalization in the TA100
of at least 0.5 %. This makes the remaining stocks comparable in size to the rest of the sample. For a more
detailed discussion of the data, see Online Appendix G.

13We again stress that there is no “shrinkage” involved in our estimator, such that our sparse representation
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Figure 10: Illustration of the rotated loading vectors λ̃•k for k = 1, . . . , 8 in panel of international
asset returns. Bars correspond to the loadings of the 272 individual stocks for the kth estimated
loading vector. Geographical groups are Germany, UK, US, France, and Middle East, separated by
dashed lines.

28



in asset returns as illustrated in Table 2. For example, λ̃•1 is almost entirely concentrated
on stocks in the Middle East, λ̃•2 and λ̃•3 are concentrated on stocks in the US, and λ̃•8 is
concentrated on stocks in the UK. The exception is λ̃•4, whose large entries are dispersed
geographically. However, all 25 stocks with a loading larger than two for this factor belong
to the Oil & Gas or the Mining sector, enabling us to clearly label this a sector-specific factor.

w Factor Region Sector

1 Middle East
2 US
3 US
4 Global Natural Resources (Oil and Mining)
5 Germany, France
6 Germany, France, UK
7 Germany, France, UK
8 UK

Table 2: Interpretation of individual factors in panel of international asset returns, based on estimated
loading matrix Λ̃.

Figure 11a depicts the number of coefficients in each estimated loading vector λ̃•k that
are “small”, where small is defined as in Section 4.1.2. It illustrates how, in this dataset,
all columns of Λ̃ exhibit significant sparsity, and our testing criterion therefore finds the
existence of local factors in this dataset. Note that the fact that some factors have very similar
sets of non-zero loadings (e.g. A2 ≈ A3), means that the corresponding loading vectors are
identified only jointly and not separately.

Alternatively, one could use the widely used Varimax criterion (Kaiser 1958) to simplify
the estimated loading matrix Λ0. The result is depicted in Online Appendix G. In order to
compare the performance of our ℓ1-rotation with the Varimax rotation, Figure 11b depicts the
number of coefficients that are small in each vector of Λ̈, the Varimax rotation. We conclude
that the rotation of Λ0 that minimizes the ℓ1-norm, Λ̃, has significantly more small loadings
than the rotation of Λ0 that maximizes the Varimax criterion, Λ̈.

of the factors fits the data exactly as well as a rotation with dense loadings. This also implies that none of the
estimated loadings in Λ̃ will be exactly equal to zero. A further regularization step is beyond the scope of this
paper. See Pelger and Xiong [2021] for a potential approach to such regularization.
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Figure 11: For each k = 1, . . . , 8, the points above represent number of small elements in λ•k, the
kth column in Λ, for daily unexpected returns of an international sample of stock returns. Dotted red
line indicates critical value for L̂0.

6.2 Local Factors and the Illusion of Sparsity in Macroeconomic
Forecasting

We next apply our identification strategy to a large panel of US macroeconomic indicators. In
particular, we use the FRED-QD data collected and maintained by Michael W. McCracken.14

Our final sample contains 206 quarterly observations of 166 macroeconomic variables, pri-
marily for the US economy.

Two papers that have looked into the nature of the optimal forecasting model in the con-
text of a very similar dataset are De Mol et al. [2008] and Giannone et al. [2021]. Both papers
investigate how forecasts that use sparsity-inducing regularization compare to regularization
methods that do not lead to a sparsity pattern in the predictors (such as ridge regressions or
factor-augmented regressions). In a Bayesian framework, Giannone et al. [2021] find a signif-
icant sparsity pattern for the predictors (more than 75% of their regressors have a coefficient
of zero), but note that there is substantial uncertainty about the identity of the relevant predic-
tors. Specifically, they note that the selection of the relevant predictors varies across posterior

14Data are available at https://research.stlouisfed.org/econ/mccracken/
fred-databases. Versions of this dataset have been used extensively in the literature on macroeco-
nomic forecasting ( De Mol et al. 2008, Stock and Watson 2016). For a full description of the data, we
refer the reader to McCracken [2019]. We use data from 1967Q1-2019Q1 and follow the transformations of
the raw data as outlined in McCracken and Ng [2016] to achieve stationarity and remove a small number of
outliers. We only use the disaggregated time series in our estimation of the factor structure and disregard the
aggregates (Boivin and Ng 2006, Stock and Watson 2016). We also drop a small number of series with missing
observations.
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draws. They posit that these findings may reflect the fact that many predictors contain similar
information. Similarly, De Mol et al. [2008] make the following two observations:

1. “The high correlation of the Lasso forecast with the PC forecast suggests that our data is highly

collinear: Under collinearity, when appropriately selected, a few variables should capture the

essence of the covariation of the data and, as principal components, span approximately the

space of the common factors.”

2. “The selection [of variables by the Lasso] is different at different points in the sample, although

selected variables generally belong to the same economic category.”

These observations can be rationalized by the presence of local factors, with each factor
affecting only a subset of the observed indicators (which will generally belong to the same
economic category). Figure 12 illustrates. It depicts a scenario with 4 local factors Fkt,
k = 1, . . . , 4. Each factor Fkt affects the outcomes in Ak, denoted by XAk

t . The optimal
forecast is based on the factors.

Figure 12: Illustration of local factors in a forecasting exercise. A factor Fkt affects only outcomes
in Ak, denoted by XAk

t .

In such a setting, a regularized estimator that induces sparsity in the individual compo-
nents of Xt will tend to select a single variable from each group Ak as a noisy proxy for Fkt.
The selected set of regressors will thus approximately span the space of the common factors.
However, selection within groups will be unstable and sensitive to minor perturbations of the
data, thereby leading to varying variable selection from the same groups across subsamples
or posterior draws.

To determine whether a “group structure” with local factors like the one depicted in Figure
12 is present in our panel of macroeconomic indicators, we first determine the number of
factors to be eight, using the Information Criterion of Bai and Ng [2002], and accordingly
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use r = 8 in what follows. To estimate the space spanned by these eight factors, we then
estimate the leading eight principal components. Unsurprisingly, these load on most of the
166 observed outcomes. The estimated loadings using the Principal Component estimator
Λ0 can be found in Online Appendix Figure 8. In contrast, Figure 13 depicts our proposed
estimator Λ̃. In order to gain an understanding of the factors, Table 3 reproduces the grouping
of variables as suggested in McCracken [2019], which is in turn based on Stock and Watson
[2012]. The corresponding groups of variables are separated by dashed lines in Figure 13.

Group Category Associated variables

1 National Income and Product Accounts (NIPA) 1-14
2 Industrial Production 15-26
3 Employment and Unemployment 27-60
4 Housing 61-68
5 Inventories, Orders, and Sales 69-74
6 Prices 75-108
7 Earnings and Productivity 109-114
8 Interest Rates 115-127
9 Money and Credit 128-136
10 Household Balance Sheets 137-142
11 Exchange Rates 143-146
12 Other 147
13 Stock Markets 148-153
14 Non-Household Balance Sheets 154-166

Table 3: Grouping of variables in panel of US macroeconomic indicators.

The first factor almost exclusively drives all price variables (group 6), allowing an easy
interpretation as an aggregated price index of which we observe multiple measurements. The
second factor is mainly associated with household balance sheets and stock markets (groups
10 and 13). This captures the intuitive notion that an increase in asset prices will be associated
with an improvement in household balance sheets. Accordingly, almost all of those indicators
are associated with positive loadings, with the exception of the dividend yield, which has a
large negative loading.

The third factor mainly affects Price variables, Earnings and Productivity indicators, and
Non-Household Balance Sheet variables. The fourth factor mainly affects interest rates, em-
ployment indicators, and industrial production. However, while the first two loading vectors
exhibit a clear sparsity pattern, in line with our Assumptions, the picture is less clear for
subsequent factors. For example, the outcomes affected by the third factor are approximately
a superset of those affected by the first factors. As discussed in Section 4, A3 ⊇ A1 would
rule out identification of the loading vector for the third factor. Similarly, the set of affected
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Figure 13: Illustration of the rotated loading vectors λ̃•k for k = 1, . . . , 8 in panel of macroeconomic
indicators. Bars correspond to the 166 individual indicators for the kth estimated loading vector.
Groups of variables are separated by dashed lines (see Table 3).
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outcomes are very similar for the fourth and fifth factors, suggesting their loadings may not
be separately identified. We therefore refrain from interpreting additional factors.

Since there exist multiple rotations of Λ0 that have a significant sparsity pattern, our test-
ing criterion again suggests the existence of local factors in this dataset. Since the conclusions
are similar, we relegate the equivalent to Figure 11 to Online Appendix F. However, we again
find that our ℓ1-rotation criterion performs better than the Varimax rotation criterion: the ro-
tation of Λ0 that minimizes the ℓ1-norm, Λ̃, has significantly more small loadings than the
rotation of Λ0 that maximizes the Varimax criterion, Λ̈.

In conclusion, we find strong evidence that there are indeed local factors present in the
data (e.g. a price index), which can serve as an explanation for the “Illusion of Sparsity”
found by Giannone et al. [2021].

7 Conclusion
We introduce a new rotation criterion to simplify the loading matrix in factor models. Our
rotation criterion minimizes the ℓ1-norm of the loadings and is theoretically appealing. Un-
like existing heuristics, such as the Varimax criterion (Kaiser 1958), we derive theoretical
guarantees for our rotation criterion if the true loading matrix is sparse: under (approximate)
sparsity in the loading matrix, our ℓ1-rotation can be used to identify the individual loading
vectors. We further introduce a method to determine whether local factors are present in a
given dataset.

Our ℓ1-rotation criterion performs well across simulations and two economic applications,
where it outperforms existing and widely used rotation criteria. In our two applications, we
find strong evidence that local factors are indeed present in the data in both cases. In both
applications our method estimates sensible economic objects, which a researcher would not
be able to recover otherwise.
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