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Abstract

When a group of investors with dispersed private information jointly invest in a
risky project, how should they divide up the project payoff? A typical common stock
contract rewards investors in proportion to their initial investment, but is it really
optimal for harnessing all investors’ “wisdom of the crowd”? By showing that a simple
profit-sharing contract with decentralized decision making could first best coordinate
individuals’ investment choices, this paper studies as a general contracting problem the
role of profit sharing in harnessing the crowd wisdom, and discusses specific implications
for the security design of investment crowdfunding. Our result connects the traditional
diversification insight underpinning portfolio theory with investment and contracting
under private information.
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Many business activities feature a “wisdom of the crowd” effect, meaning that a group’s

collective opinion often dominates the assessment of any single individual.1 An explanation

for this phenomenon is that by aggregating a large number of responses, the idiosyncratic

noises associated with each individual judgment tend to cancel out by the law of large

numbers – an argument somewhat similar to diversification in traditional portfolio theory.

Although the specific term “wisdom of the crowd” was not pushed into the mainstream until

the rise of web 2.0 (e.g. Wikipedia or Quora), and only recently gains further popularity with

the emergence of the new financing practice of crowdfunding, its underlying idea is rooted

in the tradition of economic thoughts, ranging from how the market economy coordinates

economic activities under decentralized possession of information (Hayek (1944, 1945)) to

theories of rational expectation in the financial market (e.g. Hellwig (1980), Diamond and

Verrecchia (1981)). In our information age, how well we can take advantage of wisdom of

the crowd affects resource allocation efficiency as well as economic productivity.

Cast in a specific setting of funding a scalable risky investment project from a group

of investors, this paper studies the optimal rule to divide up the project payoff among all

participating investors. The result touches on a less explored area of how contract designs in

the primary market (rather than market prices in the secondary market) could affect indi-

vidual decisions under private information.2 It could provide general insight for organizing

business activities under decentralized possession of information, as well as specific guidance

on contract designs in the emerging financing practice of investment crowdfunding.

The main takeaway from the paper is that the optimal pie-splitting rule among investors

to harness their collective wisdom features profit sharing, in which each investor agrees ex

ante to a share of the project payoff not necessarily proportional to their actual investment

1See Surowiecki (2005) for an introduction, Galton (1907) for original empirical evidence from an English
weight-judging competition, Da and Huang (2015) for recent empirical evidence from an online earnings
forecast platform, and Dindo and Massari (2017) for a theory of behavioral foundation.

2On the latter, see Bond, Edmans and Goldstein (2012) for a comprehensive discussion.
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amounts. In a broad class of standard settings, the splitting rule may take a particularly

simple structure and be completely independent of individual investment amount. In this

sense, the optimal contract differs from the often-observed common stock.

To best illustrate, consider the simplest example in which only two investors, Alice and

Bob, participate in funding a risky project. Assume that both Alice and Bob are deep

pocketed and identically risk averse, and they independently decide how much money to

commit to the project, based on their optimal return–risk trade-off. When making their

investment decisions, both investors rely on their own private information, which contains

idiosyncratic noises, of the return-per-dollar-invested from the project. Neither investor has

access to the other’s private information.3 Given these conditions, how should Alice and

Bob split the payoff from their investment?

Section 1 analyzes this example in detail and proves a somewhat counterintuitive result:

Regardless of how different Alice’s and Bob’s information quality or their actual investment

amounts may be, as a Nash equilibrium outcome they both prefer to split net investment

profit equally (while each investor still gets back the exact amount of her/his initial invest-

ment). For example, if Alice invests $200, Bob invests $100, and the project value appreciates

10 percent (i.e. the (net) profit from their investment is ($200 + $100) × 10% = $30), then

the optimal profit sharing rule stipulates that Alice gets back $200 + $30/2 =$215, and Bob

gets back $100 + $30/2 =$115. In comparison, if Alice and Bob hold common stocks, which

deliver payment in proportion to their initial investment, then assuming unchanged invest-

ment decisions and the same project performance, Alice gets back $200× (1 + 10%) = $220,

and Bob $100× (1 + 10%) = $110.

At first sight profit sharing might look like a bad deal for Alice. She could get $220 un-

3While Alice and Bob could communicate their private information in this simple two-agent example,
communication is shut down here to represent general cases with large crowds where aggregating private
information is costly. Such cost could be either direct, indirect (due to delay/herding), or incentive-induced
(for example, Section 3.3 studies a case in which investors may lie to each other for strategic reasons).
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der a common stock arrangement all else being equal, so why would she prefer to go 50-50?

The answer lies in the fact that profit sharing changes both investors’ risk-taking incentives

because it provides insurance for the idiosyncratic noises in their private information. Effec-

tively, the improved risk sharing among investors under a profit-sharing agreement enhances

their ability to bear risks, allowing them to give more weight to their own private informa-

tion when deciding on the optimal investment amount. On average, compared with common

stocks, profit sharing increases the aggregate amount committed from all investors. Thus

even if Alice equally divides net profits with Bob, under profit sharing she will actually be

entitled to a smaller slice of a larger pie. Figure 1 illustrates this intuition.

In this particular example profit sharing also brings about an even more surprising result:

Under a 50-50 contract, Alice and Bob’s total investment in equilibrium pays each of them

exactly what she/he could have received had she/he known the other investor’s private infor-

mation, even though she/he actually does not. It is in this sense that profit sharing harnesses

Alice’s and Bob’s collective wisdom. Although the 50-50 arrangement is a special result due

to identical risk aversion, it hints at a general insight: In a world featuring decentralized pos-

session of information among many individuals, some simple profit-sharing contracts could

coordinate individual actions to achieve the first-best full-information outcome.

The general insight is confirmed in settings of a large number of investors with hetero-

geneous risk aversions. In an application to investment crowdfunding, Section 2 derives the

general structure of the optimal sharing rule. Overall, a profit-sharing contract has three

attractive properties. First, it often achieves the first-best outcome. Section 2 proves that an

optimal profit-sharing contract perfectly coordinates the collective wisdom of all investors

and gives them the first-best outcome as long as wealth effects in preferences are negligi-

ble and indiosyncratic noises in each individual’s private information are normal.4 Other

4In the context of investment crowdfunding, the assumption on wealth effect applies well as each investor’s
investment amount often counts toward a tiny proportion of his/her total wealth. The second assumption
on normal idiosyncratic noises also applies well by the central limit theorem, although it could be further
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Figure 1: Profit Sharing Entitles Alice to a Smaller Piece of a Bigger Pie

If Alice and Bob find it optimal to
invest $200 and $100, respectively,

under no profit sharing (i.e. common stock)

A: $200

B: $100

Suppose the project appreciates 10% next period

A: $220

A: $110

A: $215

B: $115

Under no profit sharing If 50-50 instead
(i.e. common stock) (investment unchanged)
Alice gets back $220 Alice gets back $215

Actually, under 50-50
Alice and Bob often find it

optimal to invest more

A: > $200

B: > $100

Still suppose 10% appreciation

A: > $220?

B: > $110

Bob gets back more than $110
Alice often gets back more than $220

Profit sharing often gives a
“smaller slice of a bigger pie”

– bigger than the “bigger slice of a smaller pie”
under no profit sharing (i.e. common stock)
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than these standard assumptions, results hold for any distributions of project return and

accommodate potential (dis)economies of scale.

Second, the optimal profit-sharing contract is simple. It only requires information about

an investor’s risk tolerance, and does not depend on how well-informed each individual is,

which is private information and often hard for the contract designers to solicit. Such sim-

plicity makes practical implementation of the contract particularly easy. For example, a

crowdfunding platform can use answers to standard know-your-customer (KYC) questions

on income, wealth, investment experience, investment objectives, etc. that investors provide

when opening an account to determine the optimal sharing rule among investors participat-

ing in any given project.5 We further prove that with an optimal profit-sharing contract,

investors will also have incentives to truthfully report on such KYC questionnaires.

Third, the contract is cost-effective. Because profit sharing does not involve the direct

exchange of private information, there is no requirement of sophisticated communication

technology, no need to offer incentives to encourage disclosing private information, and no

fear of individuals lying or herding. A simple contract gives all.

While our general theory has many potential applications to helping better organize busi-

ness activities under decentralized information possession (e.g. drafting smart contracts to

implement a decentralized autonomous organization (DAO) or designing alternative public

venture financing mechanisms such as initial coin offering (ICO)), in this paper we focus on

one specific application to a new financing practice known as investment crowdfunding.6 In

May 2016, against the backdrop of Title III of the Jumpstart Our Business Startups (JOBS)

Act to help early-stage business ventures form capital, the SEC further expanded access to

extended to all exponential family distributions (Bernoulli, Beta, Categorical, Chi-squared, Exponential,
Gamma, and Poisson, etc.) as in Breon-Drish (2015) (Section 3.1).

5See Graham, Harvey and Puri (2013) for discussions on using psychometric tests to measure risk-aversion.
6For introductions to DAO as well as ICO, respectively, see two relevant articles from The Economist :

http://www.economist.com/news/finance-and-economics/21699159-new-automated-investment-fund-has-
attracted-stacks-digital-money-dao and http://www.economist.com/news/finance-and-economics/21721425-
it-may-also-spawn-valuable-innovations-market-initial-coin-offerings.
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investment crowdfunding in which entrepreneurs can directly solicit contributions from a

large number of investors in return for monetary payoffs specified by contracts agreed to at

the time of investment.7 Contracts currently used in practice offer returns in the form of

common stock, debt, or a mixture of both. It remains an open question, however, as to what

the optimal contract should look like. On a separate note, one of the many claimed benefits

of crowdfunding is that it can harness the wisdom of the crowd. This argument has been

extensively made from the entrepreneur’s perspective: By aggregating the investment deci-

sions of a large number of investors, the idiosyncratic noises associated with each individual’s

judgment tend to be diversified. Because of this diversification, the aggregate investment

amount provides crucially useful information to the entrepreneur. There are, however, few

studies on how the wisdom of the crowd could similarly benefit investors.8 An application

of our theory to crowdfunding fills these two gaps.

Section 3 further validates the robustness of our main result by relaxing assumptions

on return distribution, including costly information acquisition, and looking beyond projects

with constant return to scale. We show that the benefit of profit sharing remains intact under

non-normal project return distributions, costly information acquisition, and the presence of

(dis)economies of scale. For all relaxations, the equilibrium outcome under profit sharing

(plus cash transfers such as admission fees or signing bonuses if necessary) sustains the first-

best outcome that would have been chosen by a benevolent and omniscient social planner.

In other words, a version of the Second Welfare Theorem is obtained even at the presence

of asymmetric information and externality.

The rest of the paper is organized as follows. Section 1 analyzes the Alice–Bob problem in

7Previously Title II of the JOBS Act permits participation by accredited investors. Title III further lowers
the entry bar to include non-accredited investors. See https://www.sec.gov/rules/final/2015/33-9974.pdf for
the final SEC ruling for Title III crowdfunding.

8Apparently a contract design that most benefits investors of their collective wisdom adds to the attrac-
tiveness of the crowdfunding market as well as improves capital allocation efficiency. Hence such a contract
indirectly most benefits entrepreneurs with promising projects – the original motivation for Congress to
promote investment crowdfunding.
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detail. To illustrate applications of the general theory for multiple investors, Section 2 casts

derivations in the context of a investment crowdfunding platform and verifies the incentive

compatibility of the optimal sharing contract in practical implementation. Section 3 proves

the robustness of all results when standard assumptions are relaxed. Section 4 discusses

related literature not yet adequately covered in the context. Section 5 concludes.

1 Analysis of the Alice–Bob Example

To illustrate intuitions in the simplest form, this section proves that when Alice and Bob

have identical risk aversion, they always find it optimal to equally divide net investment

profit, regardless of their investment amount or respective private information accuracy.

Let’s first formalize the example in precise mathematical terms. Since both investors

are deep-pocketed, their preferences feature little wealth effect, and could be summarized

by a constant absolute risk aversion (CARA) utility function u(W ) = −e−ρ·W for some

ρ > 0. They individually decide on how much money to invest in a risky, scalable project

with net return per dollar invested denoted as r̃. In other words, if the gross return to

the business is R̃, then r̃ = R̃ − 1 when the intertemporal discount rate is normalized to

zero. The focus on net rather than gross return distinguishes a profit-sharing contract (to

be introduced momentarily) from traditional common stocks. Investor i’s independent yet

unbiased private information translates into a private signal si = r+ εi, where r denotes the

realization of the net return r̃, and εi ∼ N (0, τ−1
i ) is independent of r̃ and ε−i, i ∈ {A,B}.

Without loss of generality, assume that Alice’s information is (weakly) more accurate than

Bob’s, i.e. τA ≥ τB. Although it is not necessary, for exposition ease the net return r̃

is assumed to follow a normal distribution, i.e. r̃ ∼ N (r̄, τ−1
r ). This simplification helps

compare this example with the CARA-normal tradition in standard investment models (e.g.

Lintner (1965)). Section 3.1 relaxes normality to arbitrary distributions, Section 3.2 further
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considers costly acquisition of si, and Section 3.3 allows r to be dependent on Alice’s and

Bob’s investment. All results from this section will remain under these generalizations.

1.1 Investment Strategies under Common Stock

Section 1.2 will derive Alice’s and Bob’s optimal investment strategies under a 50-50 profit-

sharing agreement (to be summarized in (6)). Before delving into those derivations, for

comparison we first consider a familiar case of common stocks. If both investors agree to

hold common stocks instead, then investor i’s problem would be to choose the optimal

investment amount x′i given private signal si so that

x′i(si) = argmaxxE[−e−ρr̃x|si]. (1)

Assume a normal distribution of project return r̃ ∼ N (r̄, τ−1
r ) for ease of exposition (which

will be relaxed in Section 3.1), the right-hand side involves maximizing the moment-generating

function of a normal variable, which gives

x′i(si) = argmaxx − e−ρE(r̃|si)x+ 1
2

Var(r̃|si)ρ2x2

=
1

ρ
(τrr̄ + τisi).

In summary, we have

Proposition 1.1. Alice and Bob’s investment strategies under common stocks are

 xA = 1
ρ
(τrr̄ + τAsA)

xB = 1
ρ
(τrr̄ + τBsB)

. (2)

Notice that each investor’s investment amount is a weighted sum of the prior mean of

investment return r̄ and the private signal si, with weights being their respective precision
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normalized by investor risk aversion.

1.2 Equilibrium Investment Strategies under a 50-50 Agreement

Given an equal division of investment profits, investor i’s problem is to choose an investment

amount xi based on private signal si such that

xi(si) = argmaxxE[−e−ρ
1
2
r̃[x+x̃−i(s−i)]|si], (3)

where i ∈ {A,B} and −i = {A,B}\{i}. Because the optimum to the right hand side

depends on i’s belief of x−i(s−i), the solution constitutes a Nash equilibrium.

Definition A Nash equilibrium under equal profit sharing in the Alice–Bob example consists

of two investment strategy functions xA(·) and xB(·) such that each investor’s investment

strategy is the optimal response to his/her (correct) belief of the other’s investment strategy,

xi(si) = argmaxxE[−e−ρ
1
2
r̃[x+x̃−i(s−i)]|si], (4)

where i ∈ {A,B} and −i = {A,B}\{i}.

Section 3.1 will prove the existence and uniqueness (up to a constant) of the Nash equilib-

rium under a more general setting. However, in a special case in which all random variables

are normally distributed, a linear Nash equilibrium (which happens to be the unique Nash

equilibrium) is easily obtained via the guess-and-verify method. If we assume

xi(si) = α + βisi,
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then equation (4) leads to

α + βisi = argmaxx − E[e(−
1
2
ρr̃)(x+α+β−is̃−i)|si]. (5)

The conditional expectation on the right hand side of (5) could be interpreted as the moment-

generating function of a non-central χ2-distributed random variable (because both −1
2
ρr̃ and

x + α + β−is̃−i, that are affine transformations of the normal variable s̃−i, follow normal

distributions), which has a closed-form expression given by the following lemma.

Lemma 1.2. If

 ỹ1

ỹ2

 ∼ N

 θ1

θ2

 ,
 σ11 σ12

σ12 σ22


 , where (σ12 − 1)2 > σ11σ22 then

E
[
eỹ1ỹ2

]
=

exp {(θ2
2σ11 − 2θ1θ2σ12 + θ2

1σ22 + 2θ1θ2)/(2[(σ12 − 1)2 − σ11σ22])}√
(σ12 − 1)2 − σ11σ22

.

Proof. Standard integration.

Plug in −1
2
ρr̃ and x+ α + β−is̃−i into Lemma 1.2, and notice that conditional on si,

 −1
2
ρr̃

x+ α + β−is̃−i


|si

∼ N


 −ρ

2
τr r̄+τisi
τr+τi

x+ α + β−i
τr r̄+τisi
τr+τi

 ,
 ρ2

4(τr+τi)
− ρβ−i

2(τr+τi)

− ρβ−i
2(τr+τi)

β2
−i

(
1

τr+τi
+ 1

τ−i

)

 ,

thus the expectation on the right hand side of (5) is equal to

−

exp

{(
x+α+β−i

τrr̄+τisi
τr+τi

)2
ρ2

4(τr+τi)
− ρ

2

τrr̄+τisi
τr+τi

(
x+α+β−i

τrr̄+τisi
τr+τi

)
ρβ−i
τr+τi

+
(
ρ
2

τrr̄+τisi
τr+τi

)2
β2
−i

(
1

τr+τi
+ 1
τ−i

)
−ρ τrr̄+τisi

τr+τi

(
x+α+β−i

τrr̄+τisi
τr+τi

)
2

[(
− 1

2

ρβ−i
τr+τi

−1
)2
− ρ2

4(τr+τi)
β2
−i

(
1

τr+τi
+ 1
τ−i

)]
}

√(
−1

2
ρβ−i
τr+τi

− 1
)2

− ρ2

4(τr+τi)
β2
−i

(
1

τr+τi
+ 1

τ−i

) .

Notice that x, the variable we maximize over, only enters the numerator of the exponent

in the above expression in a linear-quadratic function, thus (5) leads to
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α + βisi = argminx

[(
x+ α + β−i

τrr̄ + τisi
τr + τi

)2
ρ2

4(τr + τi)
− ρ

2

τrr̄ + τisi
τr + τi

(
x+ α + β−i

τrr̄ + τisi
τr + τi

)
ρβ−i
τr + τi

+

(
ρ

2

τrr̄ + τisi
τr + τi

)2

β2
−i

(
1

τr + τi
+

1

τ−i

)
− ρτrr̄ + τisi

τr + τi

(
x+ α + β−i

τrr̄ + τisi
τr + τi

)]
=

2

ρ
(τrr̄ + τisi)− α.

Matching coefficients gives α = 1
ρ
τrr̄ and βi = 2

ρ
τi, leading to

Proposition 1.3. Alice and Bob’s investment strategies under profit sharing are

 xA = 1
ρ
(τrr̄ + 2τAsA)

xB = 1
ρ
(τrr̄ + 2τBsB)

. (6)

1.3 How Does Profit Sharing Alter Investment Strategies?

Comparing the investment strategies under profit sharing (6) to those under common stocks

(2), the only difference is the additional coefficient 2 in the second term. The first term

remains unchanged. This result comes from two competing forces induced by profit sharing,

with one encouraging more aggressive investment and the other partially counteracting it.

As mentioned in the introduction, profit sharing diversifies the risk induced by the id-

iosyncratic noise in each investor’s private signal, allowing investors to take on more risks

given their risk-bearing capacities. To see this mathematically, the exponent on the right

hand side of (4) is the sum of two parts: −1
2
ρr̃x and −1

2
ρr̃x̃−i(s−i). The first part −1

2
ρr̃x,

compared to −ρr̃x under no profit sharing, divides the sensitivity of i’s payoff to her invest-

ment by two. Hence it appears as if profit sharing makes investor i half less risk averse,

allowing her to invest more aggressively. This aggressiveness contributes to the higher weights

on private information observed in investor i’s investment under profit sharing.
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Were the more aggressive risk taking the only force in play, investor i would have also

(inefficiently) put more weight on her prior of r̃ (the first term in her investment strategy).

This is only prevented by the presence of the second part of the exponent on the right

hand side of (4) −1
2
ρr̃x̃−i(s−i), which involves an interaction between r̃ and investor −i’s

investment.9 As private signals are correlated due to the common component r, when Alice

receives a high signal of the project return and invests a lot accordingly, she may worry that

Bob likely has also received a high signal and invested a lot, exposing her to excessive project

risk. As a rational response, this concern would encourage Alice to act more conservatively

on her prior, balancing her otherwise aggressiveness. An optimal profit-sharing contract is

meant to achieve the best balance between such aggressiveness and conservativeness.

The joint force of aggressive and conservative in shaping optimal investment reflects the

strategic interdependence that profit sharing introduces. Note that unlike other studies on

the efficient use of information (e.g. Angeletos and Pavan (2007), Amador and Weill (2010))

where strategic complementarity/substitutability are embedded in technology, in the Alice–

Bob example with a perfectly scalable project the technology itself does not assume any

strategic interaction. All strategic interdependence stems from the profit-sharing contract.

When Alice and Bob have the same preference, the optimal profit-sharing contract that

achieves the best balance between aggressiveness and conservativeness is indeed a 50-50 one.

To understand why, notice that because investor −i’s investment is a function of −i’s private

information, the second part of the exponent on the right hand side of (4) −1
2
ρr̃x̃−i(s−i)

effectively exposes investor i to −i’s private information. Given identical risk tolerance, only

under a 50-50 contract would Bob (Alice) act exactly the same as how Alice (Bob) would

like to had she (he) gotten access to his (her) private information. In other words, a 50-50

profit-sharing contract perfectly aligns both investors’ incentives and makes each investor a

9To see more concretely, consider a hypothetical case in which Alice is forced to get only half of her
investment profit, and does not enjoy the half contributed by Bob. Alice would then invest 1

ρ (2τr r̄+ 2τAsA)

instead of 1
ρ (τr r̄ + 2τAsA) as Alice’s investment under profit sharing xA.
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perfect “agent” for the other.

The 2s in the second terms of the two right-hand side expressions in equation set (6)

reflect the aggressiveness under profit sharing, while the absence of 2s in the first terms

reflect the counteraction from the conservativeness.

1.4 Profit Sharing Harnesses the Wisdom of the Crowd

As immediate from (6), for any realization of project return and private signals, investor i’s

payoff under equal profit sharing is

r
xA(sA) + xB(sB)

2
=
r

ρ
(τrr̄ + τAsA + τBsB). (7)

Let’s compare this outcome with a full-information benchmark, in which both investors

(hypothetically) have each other’s private information and no information asymmetry exists.

In this case, without profit sharing investor i’s optimal investment amount is given by

x′i(sA, sB) = argmaxxE[−e−ρrx|sA, sB]

= argmaxx − e−ρE(r|sA,sB)x+ 1
2

Var(r|sA,sB)ρ2x2

⇒ x′i(sA, sB) =
E(r|sA, sB)

ρVar(r|sA, sB)

=
1

ρ
(τrr̄ + τAsA + τBsB).

Hence investor i’s payoff under a full-information benchmark is given by

x′i(sA, sB) =
r

ρ
(τrr̄ + τAsA + τBsB). (8)

Comparing (7) with (8) shows that the payoff under profit sharing exactly equals that

under a full-information benchmark. This observation is summarized below.
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Theorem 1.4. For all realizations of the state of nature {r, sA, sB}, each investor’s payoff

under equal division of profits is always equal to that under a full-information benchmark.

In another word, when Alice and Bob have identical risk aversions, a 50-50 profit-sharing

contract perfectly harnesses both investors’ collective wisdom.

1.5 Further Digestions of the Alice–Bob Example

It is admittedly counterintuitive at first sight to imagine that Alice is willing to go 50-

50 with Bob even when she is strictly better informed. To help appreciate this result, this

section further explains the intuition based on several comments received from earlier readers.

Readers without doubt so far may simply skip this section and head directly to Section 2.

We first study an extreme case in which Bob’s signal precision is zero (while Alice still has

positive signal precision). According to the results above, even in this extreme case, Alice

should still prefer, or at least be indifferent to, dividing profits 50-50 with Bob. Section

1.5.1 confirms this conjecture by drawing an analogy to the literature of delegated wealth

management. Section 1.5.2 dissipates a false impression that Alice may dilute profit and

lower investment return by sharing with Bob. Section 1.5.3 reconciles our new profit sharing

contract with often-observed common stocks by showing that common stocks are just special

cases of optimal profit-sharing contracts when investors have no private information (i.e.

when the wisdom of the crowd effect is irrelevant). Section 1.5.4 further dissipates concerns

over an account-dividing attack.

1.5.1 Analogy to Delegated Wealth Management

When Bob’s private signal has no information content, i.e. τB = 0, by Equation (6), we have

 xA = 1
ρ
(τrr̄ + 2τAsA)

xB = 1
ρ
τrr̄

. (9)
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One interpretation of Equation (9) is that Bob invests according to the public prior

r̃ ∼ N (r̄, τ−1
r ) only (as he has no private signal), while at the same he hires the better-

informed Alice as a “fund manager” to use her superior information and take care of his

money. Following the terminology of Admati and Pfleiderer (1990), Alice indirectly sells

her private information to Bob via delegated wealth management. Because Alice and Bob

have the same utility function, Bob would like Alice to treat his delegated funds exactly

the same way as she would treat her own money. Hence, Bob would strictly prefer to

get exactly one half of the investment profit that Alice makes. On the other hand, the

scalability of the project ensures that Alice is indifferent between alternative sharing rules,

because she can always adjust the mapping from her private information to her investment

amount so that she exposes herself to the optimal amount based on her own return–risk

trade-off. Under a 50-50 rule, however, whatever Alice chooses to invest that best suits her

own interests happens to be what Bob would choose had he had access to Alice’s private

signal. Following the principal-agent language, a 50-50 deal perfectly aligns Alice’s (agent’s)

and Bob’s (principal’s) incentives.

The above special example relates to several papers on delegated wealth management. As

mentioned earlier, Admati and Pfleiderer (1990) use the insight of indirect sale of information

to explain the rise of institutional investors. Ross (2005) suggests how delegated wealth

management could disrupt a classic noisy rational expectation equilibrium.10 Garćıa and

Vanden (2009) considers wealth delegation with endogenous information acquisition.

In the general case case in which Bob is not completely uninformed (i.e. τB > 0), Alice

and Bob are both better informed than the other in different dimensions. Following the logic

in the extreme case, Alice and Bob would also like to delegate their wealth to each other,

for which the optimal delegation contract would be to equally divide the profit made by

10In a different setting, but similar in spirit, Indjejikian, Lu and Yang (2014) suggest that the strategic
Kyle (1985) equilibrium is not stable, because the most informed investor has incentive to leak information
to an uninformed one so that the other informed investors will trade less aggressively.
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the more informed investor. Such mutual delegation would then appear like (equal) profit

sharing.

1.5.2 Do Investors Care about Terminal Wealth or Investment Return?

As is standard in economics, the investors’ problems in all derivations above are to maximize

expected utility as a function of wealth (see (3) and (1)). A few readers, however, find it

hard to reconcile with the common practice of (risk-adjusted) return maximization as in

investment theory. They argue that when Alice and Bob go 50-50 and Alice invests more

than Bob, she effectively “subsidizes” Bob and “dilutes” her own investment return, defined

as the dollar amount of net profit received over the amount of initial investment in the

project. They wonder why would Alice invest more in exchange for a “diluted” return?

The apparent conflict is resolved by an appropriate choice of denominator for return

calculation. As Alice actively chooses how much to invest in the risky project (while the rest

of her wealth earns a zero risk-free rate), her investment decision in the project is indeed

part of an asset allocation decision between investing and saving. Hence the rate of return

that Alice actually looks at should be a weighted average of project return and risk-free

rate, with the weights determined by her investment amount in the project. In other words,

Alice’s rate of return is the ratio between her overall final wealth and her total initial wealth.

With the correct choice of the denominator in return calculation, there is no longer a conflict

between utility maximizing and the pursuit of the highest (risk-adjusted) return.

1.5.3 How to Reconcile Profit Sharing with Common Stocks?

An editor of an earlier draft has raised the question of why we do not see such profit-sharing

contracts in the crowdfunding environment, or in any other capital market context. For the

first part of the question, as we have discussed in the introduction, investment crowdfunding

has really only been in practice for several months, with various types of contracts currently
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used in practice and few theoretical guidance in the literature yet. For the second part of

the question, we shall point out that widely used common stocks are indeed in no conflict

with profit sharing. When investors have homogeneous information about project payoffs

(an assumption implicit in most other capital market contexts), the optimal profit-sharing

contract coincides with a common stocks, which divides payoffs in proportional to initial

investment. In this sense, a common stock is just a special case of profit sharing when the

wisdom of the crowd effect is weak.

1.5.4 Is Profit Sharing Robust under Sybil Attacks?

Named after the case study of a woman with multiple personality disorder, a Sybil attack is

a term in computer science that refers to a type of security threat when a node in a network

claims multiple identities. We borrow the term here to characterize another comment raised

by the editor: if Alice spreads her investment across two accounts, she seems to be able

to secure two-thirds instead of one-half of net profits. Does the central result survive such

account divisibility considerations?

The short answer is yes. As will be clear once we get to Theorem 2.3, forging duplicate

accounts will endogenously lead to an (incentive compatible) different sharing ratio that

exactly cancels off its effect. Furthermore, even if the sharing ratio has to be fixed, Alice’s

launching a Sybil attack would only hurt herself as well as Bob.

2 Profit Sharing with Many Heterogeneous Investors

With intuitions from the Alice–Bob example, a general harnessing-the-wisdom-of-the-crowd

contract is easily derived. For exposition concreteness, Section 2.2 derives the optimal con-

tract within the specific context of a crowdfunding platform, although the theory can also

be applied to other business organizations in which harnessing the wisdom of the crowd is
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an important concern. Section 2.3 further discusses potential incentive problems in imple-

menting the optimal contract on a crowdfunding platform. Before moving on, Section 2.1

first provides an overview of the crowdfunding market and highlight our contributions.

2.1 The Crowdfunding Market

Crowdfunding has emerged in recent years as an alternative financing method in which en-

trepreneurs directly solicit contributions from a large number of investors. In return for their

contributions, investors receive non-pecuniary rewards (reward-based crowdfunding), private

benefits (denotation-based crowdfunding),11 or most recently monetary payoffs stipulated by

a contract agreed upon at the time of investment (investment crowdfunding).12

Currently all funding activities take place on intermediaries known as crowdfunding plat-

forms, which list projects, manage investor accounts, and supervise the entire funding pro-

cess. Platforms often differentiate themselves from peers by setting unique rules that apply

to their own projects. For example, within the category of reward-based crowdfunding, most

platforms (e.g. Kickstarter) implement the all-or-nothing rule (i.e. an entrepreneur will post

her intended fundraising goal and deadline, and she receives financing only if her fundraising

goal is met before the deadline), with a few exceptions (e.g. Indiegogo) which allow the

entrepreneur to keep whatever she has raised even if her funding goal is not met.13 In the

realm of investment crowdfunding, different platforms often offer different types of securities

to their investors. For example, Texas-based NextSeed mainly offers debt contracts, while

11See e.g. Boudreau et al. (2015).
12Agrawal, Catalini and Goldfarb (2013) provide an overview of the investment crowdfunding industry.

Vulkan, Åstebro and Sierra (2016) provide European evidence.
13While the all-or-nothing feature has proven to be effective for some reward-based crowdfunding projects

(see Cimon (2017) for a real option argument), several recent studies have also questioned its efficiency from
alternative perspectives. For example, in the context of reward-based crowdfunding, Kumar, Langberg and
Zvilichovsky (2015) find that due to price discrimination against pivotal investors, existing crowdfunding
structures may lead to a distorted phenomenon in which reducing the cost of capital to entrepreneurs may
unintentionally reduce production and welfare. In the context of investment crowdfunding, Brown and
Davies (2017) find that with all-or-nothing as well as fixed funding target and pro-rata payoff in place, a
well-informed crowd could collectively behave as if uninformed due to coordination failure.
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many peers (e.g. WeFunder) offer common stocks. Some platforms also offer more flexible

and complicated hybrid contracts.14 Despite the wide range of contract forms adopted in

practice, few theories exist yet to guide the optimal security design.

Specific to harnessing the wisdom of the crowd, regulators are well aware of crowdfund-

ing’s potential. In the first paragraph of its final rule of Regulation Crowdfunding, the

SEC highlights that “individuals interested in the crowdfunding campaign – members of the

‘crowd’ ... fund the campaign based on the collective ‘wisdom of the crowd’”.15 On the other

hand, there seems to be little consensus on the best way to harness the wisdom of the crowd.

In the same document, the SEC notes that “(investors) share information about the project,

cause, idea or business with each other” as ways to implement the wisdom of the crowd.

This interpretation, however, is challenged by recent academic research. Brown and Davies

(2017) point out that 1) “the small size and dispersed nature of investments likely make in-

dividual communication impractical”, and 2) unlike in IPO, “a setting in which underwriters

aggregate information from investors during the bookbuilding process, neither platforms nor

entrepreneurs have allocation discretion in crowdfunding. As a result, truthfully reporting

information cannot be rewarded with underpriced allocations”.16 Given these obstacles, it

is natural to investigate whether alternative mechanism designs could help.

In addition, despite extensive discussions on how crowdfunding could harness the wisdom

of the crowd from investors and provide early feedback to entrepreneurs that facilitates their

learning (e.g. Chemla and Tinn (2016) and Xu (2016)) or guide follow-up investors (Li

(2015a)), the literature is silent on how investors themselves could ever benefit from their

own wisdom of the crowd and hence make better investment decisions.17 This paper takes

this new perspective and offers a solution.

14See Belleflamme, Omrani and Peitz (2015) for a detailed discussion on various crowdfunding platforms.
15See 17 CFR Parts 200, 227, 232, 239, 240, 249, 269, and 274.
16See Ritter and Welch (2002) for a review of the IPO literature.
17Kovbasyuk (2011) investigates a related but different question of how uninformed investors learn the

crowd wisdom of experts.
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As a new financing practice in its infancy, investment crowdfunding is currently subject to

several protective regulations. For example, under the current version of Regulation Crowd-

funding, issuers may only raise $1M in a rolling 12-month period, and investors are limited

to investing a certain dollar amount based on their income or net worth.18 Despite these

restrictions, investment crowdfunding has been growing rapidly. According to incomplete

statistics collected from five crowdfunding platforms (Flashfunders, NextSeed, SeedInvest,

StartEngine, and WeFunder) by third-party service NextGen, since the first deal on May 19,

2016, the total successful capital commitment to Title III crowdfunding has surpassed $40

million by early June, 2017.19 Recently there has been legislative motions on the Capitol

Hill to relax the investment and fund-raising caps, which may further spur the growth of

investment crowdfunding.20

The vast heterogeneity in rule specifics across platforms and the likely future evolution

in regulations as the market grows make it almost impossible for a theory to match all

existing institutional details. As a result, derivations below abstract from platform- or

regulation-specific details (such as whether issuers impose fixed funding target or receive all

or nothing), but instead focus on three general characteristics of crowdfunding early-stage

enterprises. First, projects are entrepreneurial in nature and therefore investors only have

imprecise ideas about their returns, although wisdom of the crowd exists across all investors.

Second, each individual’s contribution to a particular project is small compared to his or

her total wealth, and thus there is little wealth effect that would confound an investor’s

funding decision. Third, as projects are all in their early stages, they are generally flexible in

size. Of course, these assumptions are not meant to downplay other features of investment

18The individual investment cap, however, may not be binding. As indirect evidence from reward-based
crowdfunding where no cap exists, Mollick (2014) documents an average investment size of $64.

19To put the rapid growth in perspective, Kickstarter, the pioneer in reward-based crowdfunding, has
received $2.6 billion in pledges over the seven years since its launch on April 28, 2009. That said, the
significance of crowdfunding shall probably be gauged beyond mere dollar values, when its full implications
for employment, entrepreneurship, financial inclusion, and small business growth, etc. are taken into account.

20See https://www.bna.com/house-bill-increase-n57982069100/.

21

https://www.bna.com/house-bill-increase-n57982069100/


crowdfunding, but rather to focus our current discussion.

2.2 The General Optimal Contract Features Profit Sharing

A crowdfunding platform launches a new security that stipulates a compensation scheme

among its n investors who participate in funding a risky project. In period t = 0, the

security stipulates that investor i, who has a constant absolute risk aversion parameter ρi,

receives ai of the project’s residual earnings, which will be realized by the end of period

t = 1.
∑n

i=1 ai = 1. The project renders net payoff Ỹ = r̃X, where r̃ ∼ N (r̄, τ−1
r ) denotes

the return-per-dollar-invested, and X is total amount of initial investment contributed by

all investors. Denote xi as investor i’s investment contribution, then
∑n

j=1 xi = X. Assume

that investor i has private information about the project return si = r+ ei, where r |= ei and

ei ∼ N (0, τ−1
j ), and each investor independently decides on how much to invest.

The investment provided by the n investors is given in a Nash equilibrium. In particular,

investor i chooses xi to maximize

E

[
− exp

(
−ρi

[
air(xi +

∑
k 6=i

xk)

])∣∣∣∣∣si
]
, (10)

given her perception of other players’ equilibrium investment xk, k 6= i. The following

theorem provides a linear Nash equilibrium solution for a given player.

Theorem 2.1. A Nash equilibrium exists only when the pre-agreed profit ratio is proportional

to each investor’s risk tolerance, i.e.

ai =
1/ρi∑n
i=1 1/ρi

,
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and in equilibrium investor i’s investment is given by

xi =
τrr̄

ρi
+

(
n∑
k=1

1

ρk

)
τisi. (11)

Proof. To be subsumed in the proof for Theorem 2.3. Notice that when n = 2 and ρ1 =

ρ2 = ρ, we go back to the special case with Alice and Bob.

Notice that if investor i has full information, her investment would be

xi =
τrr̄

ρi
+

∑n
i=1 τi
ρi

i∗, where i∗ =

∑n
k=1 τksk∑n
k=1 τk

.

Thus investor i’s payoff is

r

(
τrr̄

ρi
+

∑n
i=1 τi
ρi

i∗
)

under both full information and profit sharing. This observation is summarized below.

Theorem 2.2. Conditional on her own private information, an investor’s expected utility

under a well-designed profit-sharing contract is identical to the expected utility she could

obtain had she known all the other investors’ private information while taking common stocks.

Similar to in the Alice–Bob example, the benefit from profit sharing has a diversification

explanation. Profit sharing effectively takes the average over a large number of condition-

ally independent signals, and by the law of large numbers it goes toward canceling the

idiosyncratic noises associated with each individual’s private information. This insight is

reminiscent of what has become conventional wisdom since the seminal work of Markowitz

(1952) that proper diversification achieves optimal return-risk trade-off. There are, however,

several differences between Theorem 2.2 and traditional diversification arguments. First,

diversification in portfolio theory relies on pooling multiple assets, while diversification in

Theorem 2.2 comes from pooling multiple signals, and applies to cases of only one risky
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project. Second, portfolio theory usually does not involve asymmetric information, while

Theorem 2.2 requires dispersed private information, without which (i.e., τe = 0) profit shar-

ing would make no difference. Third, as Appendix 3.1 will show, Theorem 2.2 extends

beyond cases with normal distributions, while traditional portfolio theory depends on the

absence of higher (than second) moments.21

2.3 Incentive to Truthfully Report Risk-Tolerances

As Theorem 2.1 clarifies, an optimal contract that harness the wisdom of the crowd only

requires information about investors’ risk tolerances. From the crowdfunding platform’s per-

spective, how could they extract this information when designing the contract? This section

shows that at the contract signing stage, each investor has a strict incentive to truthfully

report his/her risk tolerance. This is because if they misreport their risk tolerances so that

the crowdfunding platform stipulates an alternative sharing contract based on distorted in-

formation, all investors’ expected utility will be lowered (even though this negative effect

could be partially but never completely diminished by investors making a “private” invest-

ment in the project outside the funding platform). To see this, consider how investor i, who

is entitled to an arbitrary share ai of the project’s net profit, chooses xi and Xi to maximize

E

[
− exp

(
−ρi

[
ajr(xi +

∑
k 6=i

xk) + rXi

])∣∣∣∣∣si
]
, (12)

given her belief of other investors’ equilibrium investment strategies xk, k 6= i. Xi denotes

investor i’s “private” investment in the project outside the profit-sharing agreement, if any.

Investors may have incentives to engage in “private” investment to (partially) offset their un-

desired risk exposure to the project whenever the profit-sharing rule is not optimal. Theorem

2.3 summarizes results in this setting.

21For example, Conine and Tamarkin (1981) show that given the existence of positive skewness a rational
investor may hold an optimal limited number of homogeneous risk assets.
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Theorem 2.3. Each investor’s expected utility is maximized when profits from the project

are divided according to investors’ risk tolerance, i.e. ai =
1
ρi∑n
i=1

1
ρi

. In the resulting linear

Nash equilibrium, investors do not make “private” investments, that is Xi = 0.

Proof. A linear symmetric equilibrium is given by xk + Xk
ak

= πk + γksk + Πk+Γksk
ak

for some

πk and γk. Because

 −aiρir

xi + Xi
ai

+
∑

k 6=i xk


|si

∼ N


 −ρiaiE(v|si)

xi + Xi
ai

+
∑

k 6=i πk +
∑

k 6=i γkE(v|si)

 ,
 ρ2

i a
2
iVar(v|si) −ρiai

∑
k 6=i γkVar(v|si)

−ρiai
∑

k 6=i γkVar(v|si) (
∑

k 6=i γk)
2Var(v|si) +

∑
k 6=i γ

2
kτ
−1
k




by Lemma 1.2, investor i equivalently minimizes

θ2
2ρ

2
i a

2
iVar(v|si) + 2θ1θ2ρiai

∑
k 6=i

γkVar(v|si) + θ2
1[(
∑
k 6=i

γk)
2Var(v|si) +

∑
k 6=i

γ2
kτ
−1
k ] + 2θ1θ2

FOC
==⇒ 2θ2ρ

2
i a

2
iVar(v|si) + 2θ1ρiai

∑
k 6=i

γkVar(v|si) + 2θ1 = 0,

where θ1 = −ρiaiE(v|si) and θ2 = xi +
Xi

ai
+
∑
k 6=i

πk +
∑
k 6=i

γkE(v|si).

Plugging in xi + Xi
ai

= πi + γisi + Πi+Γisi
ai

leads to

[
∑
k 6=i

πk + πi + γisi +
Πi + Γisi

ai
+
∑
k 6=i

γkE(v|si)]ρ2
i a

2
iVar(v|si)

−ρiaiE(v|si)ρiai
∑
k 6=i

γkVar(v|si)− ρiaiE(v|si) = 0.

Matching coefficients renders (γi+
Γi
ai

)ρiai = τi, (Π + Πi
ai

)ρiai = τrr̄ (where Π
.
=
∑n

i=1 πi).

Plug in each investor’s equilibrium investment amount into (12), and with Lemma 1.2
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we obtain investor i’s expected utility

−
√
τr + τi exp{− (τr+τi)[E(v|si)]2

2
}√

τr + τi + 2ρiai
∑

k 6=i γk − ρ2
i a

2
i

∑
k 6=i γ

2
kτ
−1
k

, (13)

which is maximized at γk = τk
ρiai

. Plugging in γi + Γi
ai

= τi
τr r̄

(Π + πi
ai

) and 1
τr r̄

(Π + πi
ai

)ρiai = 1

shows that at the optimal γi, Γi = 0. Thus for any given sharing rule ak (k = 1, · · · , n),

there exists a linear equilibrium in which each investor optimally chooses her amount of

investment both within and outside of the crowdfunding platform. In particular, when ai

is chosen to be
1
ρi∑n
i=1

1
ρi

, no investor has incentive to maintain investment in the particular

project of question outside of the crowdfunding platform, and the resulting equilibrium gives

the highest expected utilities to all investors.

3 Generalizations and Robustness

This section relaxes the assumptions in Section 2.2. We will confirm the superiority of

profit sharing even if the project return follows arbitrary distributions, investors’ private

information has to be costly acquired, and the project features (dis)economy of scale. For

exposition ease, we will restrict ourselves to a two-agent case, although accommodating more

than two investors is straightforward except for more tedious math. All proofs are left to

the Appendix.

3.1 Arbitrary Distributions of Project Return r̃

So far in all derivations we have assumed that the project return r̃ follows a normal distri-

bution. Empirically, however, returns from entrepreneurial projects are likely to be highly

skewed. Most ventures fail and only a small number of projects eventually take off and

win big. This section verifies the main result from Section 2.2 (that profit sharing perfectly
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harnesses the wisdom of the crowd) does not rely on the normality of r̃. Indeed it could

work under any arbitrary distribution. A modest sufficient condition for this to hold fol-

lows the spirit of Breon-Drish (2015) that the likelihood function of r̃ given private signals

si, i ∈ {A,B} lies in an exponential family.22 Because this condition includes normally dis-

tributed idiosyncratic noises, empirically it is likely to hold, especially when the number of

investors is large as in crowdfunding. The following theorem summarizes.

Theorem 3.1. For any arbitrary distributions of project return r̃ and an exponential family

likelihood function of r̃ given private signals si, i ∈ {A,B}, an optimally designed profit-

sharing contract gives the same payoff for both investors as in a full-information benchmark.

3.2 Costly Information Acquisition

Our discussion so far has assumed that each investor’s private information comes from en-

dowment. Although this is a sensible assumption for many crowdfunding projects, it is

natural to think of cases in which investors’ private information has been acquired at some

cost. If investors cannot externalize their private costs in information acquisition, a moral

hazard in team concern (Holmström (1982)) may arise as each investor would like to save

his/her private information acquisition cost and free ride on the others. The free-rider prob-

lem under endogenous information acquisition may counter the benefits from the wisdom

of the crowd, and hence discourage investors from entering into a profit-sharing agreement.

This section shows that, under standard assumptions on information acquisition costs, this

concern is nonexistent, as summarized in the following theorem.

Theorem 3.2. With a constant cost to acquire an extra unit of signal precision, investors

strictly prefer more participants in profit sharing. In other words, in this case the free-riding

concern is not large enough to cancel out the wisdom of the crowd benefit from profit sharing.

22Exponential family distributions are extensively used in Bayesian statistics (e.g. deriving conjugate
priors) and decision theories to preserve closed-form expression.
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3.3 Projects with (Dis)economy of Scale

Our discussion so far has been focusing on investment projects that have a constant return

to scale. Although this is a sensible assumption in the context of investment crowdfund-

ing, in applications beyond crowdfunding we are more likely to see businesses that feature

(dis)economies of scale. This section shows that in the presence of (dis)economy of scale,

the optimal profit-sharing contract derived in previous sections is still first-best optimal.

To this end consider an Alice–Bob model similar to the one in Section 1 except that

the net return per dollar invested from the project is influenced by the total dollar amount

invested. Specifically, assume that the net return is r̃ − λ(x1 + x2). Note λ = 0 corre-

sponds to a constant-return-to-scale project discussed in Section 1. λ > 0 corresponds to

a decreasing-return-to-scale project, and λ < 0 an increasing-return-to-scale project. The

following lemmas summarize investor i’s expected utilities under profit sharing and a full-

information benchmark.

Lemma 3.3 (Profit Sharing). Under a profit-sharing contract in which the sharing rule

divides the net payoff proportional to the investors’ risk tolerances, a Nash equilibrium exists

under which strategy functions are given as xi(si) = α + βisi, where i ∈ {A,B} such that

βi =
τi

ρiρ−i
ρi+ρ−i

+ 2λ(τr + τi + τ−i)
(14)

α =
1

2

τrr̄
ρiρ−i
ρi+ρ−i

+ 2λ(τr + τi + τ−i)
(15)

and investor i’s expected utility is

−
exp

(
− (r̄τr+siτi)

2

2(τi+τr)
ρiρ−i

2λ(ρi+ρ−i)(τi+τr)+ρiρ−i

)
√

τ−i+τi+τr
τi+τr

2λ(ρi+ρ−i)(τi+τr)+ρiρ−i
2λ(ρi+ρ−i)(τ−i+τi+τr)+ρiρ−i

(16)

Lemma 3.4 (Full-Information Benchmark). In a full-information benchmark, investor
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i chooses xi(si) = αi + βiAsA + βiBsB, where i ∈ {A,B}, such that

αi =
r̄τr (λ (τA + τB + τr) + ρ−i)

ρ−i (2λ (τA + τB + τr) + ρi) + λ (τA + τB + τr) (3λ (τA + τB + τr) + 2ρi)

βiA =
τA (λ (τA + τB + τr) + ρ−i)

ρ−i (2λ (τA + τB + τr) + ρi) + λ (τA + τB + τr) (3λ (τA + τB + τr) + 2ρi)

βiB =
τB (λ (τA + τB + τr) + ρ−i)

ρ−i (2λ (τA + τB + τr) + ρi) + λ (τA + τB + τr) (3λ (τA + τB + τr) + 2ρi)
,

and investor i’s expected utility is

−
exp

(
− (r̄τr+siτi)

2

2(τi+τr)
ρi(τi+τ−i+τr)(λ(τi+τ−i+τr)+ρ−i)

2(2λ(τi+τ−i+τr)+ρi)

τ−iρi(2λ(τi+τ−i+τr)+ρi)(λ(τi+τ−i+τr)+ρ−i)
2+(τi+τr)(ρ−i(2λ(τi+τ−i+τr)+ρi)+λ(τi+τ−i+τr)(3λ(τi+τ−i+τr)+2ρi))

2

)
√

1
τi+τr

√
τi + τr + τ−iρi(2λ(τi+τ−i+τr)+ρi)(λ(τi+τ−i+τr)+ρ−i)

2

(ρ−i(2λ(τi+τ−i+τr)+ρi)+λ(τi+τ−i+τr)(3λ(τi+τ−i+τr)+2ρi))
2

(17)

As apparent from Theorems 3.3 and 3.4, the expected utilities under profit sharing and

that under a full-information benchmark are no longer identical when the project features

(dis)economy of scale. However, in this case profit sharing could still dominate a full-

information benchmark. Indeed, we have a stronger result. If we take a mechanism design

approach and compare the expected utilities achieved under profit sharing with the first-best

outcome a benevolent and omniscient social planner can get, we find that with the intro-

duction of cash transfers such as lump-sum admission fees or signing bonuses, profit sharing

could always sustain the first-best outcome. Theorem 3.5 summarizes this result.

Theorem 3.5. In an Alice–Bob example (Section 1) where the project features (dis)economy

of scale, the first-best allocation chosen by an omniscient and benevolent social planner could

be sustained with a Nash equilibrium under profit sharing plus some cash transfers. The

profit-sharing rule sustaining the Pareto optimal outcome divides net investment profit in

proportion to investors’ risk tolerances.

To facilitate further discussion we highlight two features of the first-best outcome (derived
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in the proof of Theorem 3.5). First, an omniscient and benevolent social planner would order

A and B to jointly invest

x =
r̄τr + τAsA + τBsB

2λ(τA + τB + τr) + ρAρB
ρA+ρB

in the risk project. Second, when the project return realizes, the social planner would give

investor A (in addition to her initial investment)

log
(
ρAγA
ρBγB

)
+ ρB(r − λx)x

ρA + ρB
,

and give investor B (in addition to his initial investment)

− log
(
ρAγA
ρBγB

)
+ ρA(r − λx)x

ρA + ρB
.

Here γA and γB are Pareto weights assigned to A and B by the social planner.

When γi = 1
ρi

where i ∈ {A,B}, we have the first-best outcome to be investor A getting a

share of
1
ρA

1
ρA

+ 1
ρB

of the net investment profit, while investor B gets a share of
1
ρB

1
ρA

+ 1
ρB

. In other

words, the social planner’s first-best choice is also to divide (net) investment profit between

the two investors in proportion to each investor’s risk-tolerance. When Pareto weights (γi-s)

change, cash transfers of amount ±
log
(
ρAγA
ρBγB

)
ρA+ρB

are necessary to sustain the first-best allocation,

but the sharing rule does not change at all.

Furthermore, when we compare the sum of each investor’s optimal investment amount

under profit sharing (Lemma 3.3) with the first-best joint investment amount chosen by the

social planner (Theorem 3.5), it is easily verified that they are exactly the same. In other

words, even in the presence of decreasing return to scale, a profit-sharing contract perfectly

replicates the first-best outcome.

Theorem 3.5 is reminiscent of a generalized Second Welfare Theorem. Despite the pres-

ence of strategic interdependence and asymmetric information, any Pareto optimal outcome
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could be sustained with an equilibrium under profit sharing with lump sum transfers.23

Theorem 3.5 is significant also because it shows that when investors have strict incentives

to lie to each other (at the presence of a decreasing-return-to-scale project), so that the

first-best outcome is hard to obtain by conventional approaches, profit sharing provides a

simple alternative.

4 Literature

There is a growing economic literature on the wisdom of the crowd. Kremer, Mansour and

Perry (2014) study one form of implementation of the wisdom of the crowd by character-

izing the optimal disclosure policy of a planner who maximizes social welfare in a setting

where agents arrive sequentially and choose one from a set of actions with unknown payoffs.

Da and Huang (2015) run experiments on Estimize.com, a crowd-based earnings forecast

platform, in which they restrict the information set available to randomly selected users.

Their experiments confirm that independent forecasts lead to more accurate consensus and

suggest that the wisdom of the crowd can be better harnessed by encouraging independent

voices from the participants, preventing information cascade (Bikhchandani, Hirshleifer and

Welch (1992) and Welch (2000), etc.).24 In the setting of investment crowdfunding plat-

forms, Brown and Davies (2017) show that naive investors, possessing weak but on average

correct signals, are required for efficient financing in the presence of the all-or-nothing clause.

They develop a model showing that sophisticated investors, who are better informed and

anticipate other investors’ actions, cannot by themselves use their information to improve

financing efficiency.

23We conjecture but have not yet been able to elucidate that this result might serve as a path toward
a formal statement and proof of the Coase theorem that with no transaction costs, an efficient set of in-
puts/outputs to and from a production-optimal distribution will be selected regardless of how property rights
are divided.

24Information cascade could also potentially plague investment crowdfunding, as described by Hornuf and
Schwienbacher (2016) in a sample of equity crowdfunding platforms from Germany.
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There is also an emerging literature studying various crowdfunding mechanisms, mostly

in reward-based crowdfunding. For example, Cumming, Leboeuf and Schwienbacher (2015)

compare keep-it-all versus all-or-nothing financing, and show that keep-it-all mechanisms

are better for small, scalable projects. On the other hand, Chang (2015) shows that all-or-

nothing funding generates more revenue than keep-it-all funding by helping the entrepreneurs

learn market value as all-or-nothing funding complements borrowing. Kumar, Langberg and

Zvilichovsky (2015) derive the optimal crowdfunding contract of a financially constrained

monopolist and analyze its implications for production, investment and welfare. They em-

phasize that crowdfunding contracts may serve as a price-discrimination mechanism. Strausz

(forthcoming) and Ellman and Hurkens (2015) study the optimal reward-based crowdfunding

design with a focus on a trade-off between improved screening/adaption and worsening en-

trepreneur moral hazard/rent extraction, respectively. Belleflamme, Lambert and Schwien-

bacher (2014) emphasize the role of private benefits in determining an entrepreneur’s choice

between crowdfunding via pre-orders and selling equity claims. Hakenes and Schlegel (2014)

analyze a model with endogenous information production and debt-based crowdfunding, and

highlight the winner’s curse and the natural hedge from not financing bad projects. Grüner

and Siemroth (2015) consider crowdfunding as a mechanism in which consumers signal future

product market demand via investment.

5 Conclusion

As human race enters an information age, many business activities could benefit from a

wisdom of the crowd effect. By highlighting the role of profit sharing, this paper provides

a contracting solution to harness the wisdom of the crowd. As a concrete example, we

also examine how the general theoretical results could be applied to guide security design

for the emerging crowdfunding market. A profit-sharing contract different from typically
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observed common stocks could often help investors achieve better (risk-adjusted) investment

performance, as well as ease financing for entrepreneurs with positive-return projects.25

The optimal profit-sharing contract described in the paper is easy to implement on crowd-

funding platforms, as the sharing rule does not depend on investors’ private information

about the project, nor does it require potentially costly direct communication among a large

group of investors. As a word of caution, however, the effectiveness of profit sharing in

harnessing the wisdom of the crowd, as mathematically proved by a Nash equilibrium, does

depend on investors being rational. This rationality requirement emphasizes the crucial

importance of investor education to accompany the launch of any profit-sharing contracts.

As investors gradually get more familiar with the new practice of investment crowd-

funding, right now seems to be the best time to begin educating investors regarding why

profit-sharing could benefit them, and what their optimal investment strategies should be

when they share profits with each other. It would be much easier to carry out investor edu-

cation when investors are still learning about a new market than to change their entrenched

understanding once the market matures. Although outside of the scope of the current paper,

we provide a brief perspective on the timely topic of an effective plan of investor education.

1. An alternative term to “profit-sharing” could be coined to more sharply distinguish

from common stock or other existing contract forms.

2. Investor education could start by first educating entrepreneurs/issuers because

(a) entrepreneurs are often more open-minded and eager to learn;

25The requirement of a project being small, as in the application of crowdfunding, helps bypass concerns
over bankruptcy as well as wealth effects in preferences. For other applications where project size may
be large, future work could impose margin requirements, or as proved by Section 3.1 simply use lower
bounded distributions instead of normal distribution for the main derivation. When wealth effect is non-
negligible, we conjecture that our main result still holds if the sharing rule is proportional to investors’
risk tolerances in equilibrium. Since this further requires additional contracting variables such as investment
amount and realized project returns, implementation will likely involve some smart contracts with augmented
contractibility. We leave this discussion for future research.
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(b) entrepreneurs with good projects are direct beneficiaries of a profit-sharing con-

tract, hence they would have strong incentives to educate their investors, too;

(c) once many entrepreneurs contribute to investor education, some of them may be

able to come up with better ways for investor education, and “the wisdom of the

crowd” (of entrepreneurs) will be harnessed.

Outside of the application to investment crowdfunding, many other implications from

the general theory are left for future research. For example, are there similarities between

profit-sharing and the structures of traditional cooperative/partnership firms (Hansmann

(2009); Li (2015b))? What are the implications for the optimal compensation within team-

managed asset managers or large private equity/venture capital partnerships? What is the

connection between profit sharing and strategic alliances in R&D activities? How does profit

sharing relate to classic theory of syndicates (Wilson (1968)) and financial intermediaries

(e.g. Diamond (1984), Ramakrishnan and Thakor (1984))? What are the implications of

profit sharing for the design of alternative governance models such as the Decentralized

Autonomous Organization (DAO) on smart contract? How does it connect to models of

information aggregation on voting (see e.g. Feddersen and Pesendorfer (1997) and Bond

and Eraslan (2010))? Are there similarities between profit-sharing and the compensation

structures of a cryptocurrency mining pool (Baldimtsi et al. (2017))? Further developments

are down the road.
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Vulkan, Nir, Thomas Åstebro, and Manuel Fernandez Sierra. 2016. “Equity crowd-
funding: A new phenomena.” Journal of Business Venturing Insights, 5: 37–49. 19

Welch, Ivo. 2000. “Herding among security analysts.” Journal of Financial Economics,
58(3): 369–396. 31

Wilson, Robert. 1968. “The theory of syndicates.” Econometrica, 119–132. 34

Xu, Ting. 2016. “The Informational Role of Crowdfunding.” Available at SSRN 2637699.
20

Appendix

A Proof of Theorem 3.1

Proof. Denote u(W ) = −e−ρW , and consider general distributions of r and si, i ∈ {A,B}. Under
a full-information benchmark xi(si, s−i) maximizes

E [u(xr̃)|si, s−i]

=

∫
u(xr)f(r|si, s−i)dr

=

∫
u(xr)f(s−i|r, si)f(si|r)f(r)

1

f(si, s−i)
dr

=

∫
u(xr)f(s−i|r)f(si|r)f(r)

1

f(si, s−i)
dr, (∵ si |= s−i|r),

or equivalently x(si, s−i) maximizes∫
u(xr)f(s−i|r)f(si|r)f(r)dr (18)

Assume the profit-sharing agreement stipulates that investor i gets αi of the total profit (
∑

i αi = 1),
then under profit sharing xi(si) maximizes (in a Nash equilibrium)

E [u (αixr̃ + αix−i(s−i)r̃)) |si]

=

∫∫
u (αixr + αix−i(s−i)r) f(r, s−i|si)ds−idr

=

∫∫
u (αixr + αix−i(s−i)r) f(s−i|r)f(si|r)f(r)

1

f(si)
ds−idr,

or equivalently x(si) maximizes∫∫
u (αixr + αix−i(s−i)r) f(s−i|r)f(si|r)f(r)ds−idr (19)
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Taking first-order conditions we have that

(18)⇒
∫
u′(xi(si, s−i)r)rf(s−i|r)f(si|r)f(r)dr = 0 (20)

(19)⇒
∫∫

u′ (αixi(si)r + αix−i(s−i)r) rf(s−i|r)f(si|r)f(r)ds−idr = 0, (21)

where (with some abuse of notation) x(si, s−i) denotes the optimal investment amount given sig-
nal si and s−i under the full-information benchmark, while xi(si) denotes investor i’s investment
amount given signal si in the Nash equilibrium under profit sharing.

As the likelihood function of r given private signals si, i ∈ {A,B} lies in an exponential family,
there exists constant ki as well as positive functions h(·) and g(·) such that

f(si|r) = hi(si)e
rkisigi(r).

Hence

(20)⇒ −
∫
e−ρxi(si,s−i)rrh−i(s−i)e

rk−is−ig−i(r)hi(si)e
rkisigi(r)f(r)dr = 0 (22)

(21)⇒ −
∫∫

e−ρ(αixi(si)r+αix−i(s−i)r)rh−i(s−i)e
rk−is−ig−i(r)hi(si)e

rkisigi(r)f(r)ds−idr = 0

(23)

or (factoring out −hi(si))

(22) ⇒
∫
e−ρxi(si,s−i)r+rk−is−i+rkisirgi(r)g−i(r)f(r)dr = 0 (24)

(23) ⇒
∫∫

e−ρ(αixi(si)r+αix−i(s−i)r)rh−i(s−i)e
rk−is−i+rkisigi(r)g−i(r)f(r)ds−idr = 0

⇒
∫
e−ραixi(si)r+rkisirgi(r)g−i(r)f(r)

(∫
e−ραix−i(s−i)rh−i(s−i)e

rk−is−ids−i

)
dr = 0.(25)

Notice that under the full-information benchmark, equation (24) has a unique solution, which
is linear in si and s−i. To see this consider the equation of x∫

exrrgi(r)g−i(r)f(r)dr = 0. (26)

Taking derivative with respect to x immediately tells that equation (26) has at most one solution,
denoted as X. Compared to equation (24) we get xi(si, s−i) = 1

ρ(k−is−i + kisi −X).
Similarly, under any profit-sharing agreement (i.e. ∀αi), equation (25) has a unique Nash

equilibrium, in which investor i’s strategy is linear in si, ∀i. To see this, consider the equation of x∫
erxrgi(r)g−i(r)f(r)H−i(r)dr = 0,

where H−i(r) =
∫
e−ραix−i(s−i)rh−i(s−i)e

rk−is−ids−i > 0. Taking derivative with respect to x
immediately tells that the equation features at most one solution (for a given x−i(s−i)). Compared
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to equation (25) we get that xi(si) = kisi−C
ραi

, where C is a constant such that∫
erCrgi(r)g−i(r)f(r)H−i(r)dr = 0. (27)

By the same logic, x−i(s−i) = k−is−i−C′
ρα−i

, where C ′ is also a constant such that∫
erC

′
rgi(r)g−i(r)f(r)Hi(r)dr = 0, (28)

where Hi(r) =
∫
e−ρα−ixi(si)rhi(si)e

rkisidsi > 0. Plug in xi and x−i into (27) , we have∫
erCrgi(r)g−i(r)f(r)

∫
e
αi
α−i

(C′−k−is−i)r
h−i(s−i)e

rk−is−ids−idr = 0. (29)

If αi = α−i = 1
2 , equation (29) simplifies into (after factoring out

∫
h−i(s−i)ds−i)∫

er(C
′+C)rgi(r)g−i(r)f(r)dr = 0. (30)

Since equation (26) has at most one solution, we have C + C ′ = X. Thus under profit-sharing the
payoff to investor i for a given realization of r and private signals is

αixi(si)r + αix−i(s−i)r

= αi
kisi − C
ραi

r + αi
k−is−i − C ′

ρα−i
r

=
r

ρ
(kisi − C + k−is−i − C ′), if αi = α−i =

1

2

=
r

ρ
(kisi + k−is−i −X), if αi = α−i =

1

2
,

which exactly equals to rx(si, s−i), or the payoff under a full-information benchmark. When the
profit-sharing agreement is optimally designed, profit-sharing obtains the same payoff as under the
full-information benchmark.
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B Proof of Theorem 3.2

Proof. From (13) it is immediate that investor i’s expected utility conditional on her private signal
under a properly designed profit-sharing contract is given by

−
√
τr + τi exp{− (τr+τi)[E(v|si)]2

2 }√√√√τr + τi + 2 1∑n
i=1

1
ρi

∑
k 6=i

τk
1∑n

i=1
1
ρi

−
(

1∑n
i=1

1
ρi

)2∑
k 6=i

(
τk
1∑n

i=1
1
ρi

)2

τ−1
k

= −
exp

(
− (τisi+τv v̄)2

2(τi+τv)

)
√∑n

k=1 τk+τv
τi+τv

. (31)

Hence if one unit of precision costs c, investor i’s ex ante expected utility would be

E

−exp
(
− (τisi+τv v̄)2

2(τi+τv)

)
√∑n

k=1 τk+τv
τi+τv

− cτi = −
√
τv exp

{
−τv v̄2

2

}
√∑n

k=1 τk + τv
− cτi, (32)

for an optimally chosen τi. To pin down the optimal τi, consider a symmetric equilibrium in which
the FOC is given by taking derivative of the right hand side of (32) with respect to τi:

1

2

√
τv exp

(
−τvv̄2

2

)
(nτi + τv)

− 3
2 = c. (33)

From (33), we see that the optimal τi is decreasing in n, the number of participants in profit sharing.
This observation is in line with the Holmström (1982) free-rider effect. However, such free-rider
effect is not enough to offset the benefit from wisdom of the crowd. To see this, plug (33) into the
right-hand side of (32), we get the expected utility for investor i can be expressed as

− (2c)
1
3

[
√
τv exp

(
−τvv̄2

2

)] 2
3

− cτi, (34)

which decreases with τi, and hence increases with n.

C Proof of Lemma 3.3

Proof. Under a profit-sharing contract, investor i chooses xi to maximize

E[−e−aiρi[r−λ(xi+x−i)](xi+x−i)|si].

Still guess and verify a symmetric equilibrium xi(si) = α+ βisi, where i ∈ {A,B} gives

xi = argmaxxE[−e−aiρi[r−λ(x+α+β−is−i)](x+α+β−is−i)|si]. (35)
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Plug in −aiρi[r − λ(x+ α+ β−is−i)] and x+ α+ β−is−i into Lemma 1.2, and since

[
−ρiai[r − λ(x+ α+ β−is−i)]

x+ α+ β−is−i

]
|si
∼ N


[
−ρiai τr r̄+τisiτr+τi

+ ρiaiλ(x+ α) + ρiaiλβ−i
τr r̄+τisi
τr+τi

x+ α+ β−i
τr r̄+τisi
τr+τi

]
, ρ2

i a
2
i (1−λβ−i)2

τr+τi
+

ρ2
i a

2
i λ

2β2
−i

τ−i
−ρiaiβ−i(1−λβ−i)

τr+τi
+

ρiaiλβ
2
−i

τ−i

−ρiaiβ−i(1−λβ−i)
τr+τi

+
ρiaiλβ

2
−i

τ−i
β2
−i

(
1

τr+τi
+ 1

τ−i

) 
 ,

the expectation on the right hand side of (35) is equal to

−

exp{



a2
i

(
x+ α+ β−i

τr r̄+τisi
τr+τi

)2 (ρ2
i (1−λβ−i)2

τr+τi
+

ρ2
i λ

2β2
−i

τ−i

)
+2a2

i

(
−ρi τr r̄+τisiτr+τi

+ ρiλ(x+ α) + ρiλβ−i
τr r̄+τisi
τr+τi

)(
x+ α+ β−i

τr r̄+τisi
τr+τi

)(
ρiβ−i(1−λβ−i)

τr+τi
− ρiλβ

2
−i

τ−i

)
+a2

i

(
−ρi τr r̄+τisiτr+τi

+ ρiλ(x+ α) + ρiλβ−i
τr r̄+τisi
τr+τi

)2
β2
−i

(
1

τr+τi
+ 1

τ−i

)
+2ai

(
−ρi τr r̄+τisiτr+τi

+ ρiλ(x+ α) + ρiλβ−i
τr r̄+τisi
τr+τi

)(
x+ α+ β−i

τr r̄+τisi
τr+τi

)


2

[(
− ρiaiβ−i(1−λβ−i)

τr+τi
+
ρiaiλβ

2
−i

τ−i
−1

)2

−a2
i

(
ρ2
i
(1−λβ−i)2

τr+τi
+
ρ2
i
λ2β2
−i

τ−i

)
β2
−i

(
1

τr+τi
+ 1
τ−i

)] }

√(
−ρiaiβ−i(1−λβ−i)

τr+τi
+

ρiaiλβ2
−i

τ−i
− 1
)2

− a2
i

(
ρ2
i (1−λβ−i)2

τr+τi
+

ρ2
i λ

2β2
−i

τ−i

)
β2
−i

(
1

τr+τi
+ 1

τ−i

) .

(36)
Notice that x, the variable we maximize over, only enters the numerator of the exponent in the
above expression in a linear-quadratic function, thus

α+ βisi = argminx

[
a2
i

(
x+ α+ β−i

τrr̄ + τisi
τr + τi

)2(ρ2(1− λβ−i)2

τr + τi
+
ρ2λ2β2

−i
τ−i

)
+2a2

i

(
−ρτrr̄ + τisi

τr + τi
+ ρλ(x+ α) + ρλβ−i

τrr̄ + τisi
τr + τi

)(
x+ α+ β−i

τrr̄ + τisi
τr + τi

)(
ρβ−i(1− λβ−i)

τr + τi
−
ρλβ2

−i
τ−i

)
+a2

i

(
−ρτrr̄ + τisi

τr + τi
+ ρλ(x+ α) + ρλβ−i

τrr̄ + τisi
τr + τi

)2

β2
−i

(
1

τr + τi
+

1

τ−i

)
+2ai

(
−ρτrr̄ + τisi

τr + τi
+ ρλ(x+ α) + ρλβ−i

τrr̄ + τisi
τr + τi

)(
x+ α+ β−i

τrr̄ + τisi
τr + τi

)]
=

(τrr̄ + τisi) (1− 2β−iλ)

aiρ+ 2λ(τr + τi)
− α

Matching coefficients gives

βi =
τi (1− 2β−iλ)

aiρ+ 2λ(τr + τi)
(37)

2α =
τrr̄ (1− 2β−iλ)

aiρ+ 2λ(τr + τi)
(38)
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Interchanging i and −i into (37) it is easy to verify that

β−i =
τ−i (aiρi + 2λτr)

aiρia−iρ−i + 2λ(τr + τ−i)aiρi + 2λ(τr + τi)a−iρ−i + 4λ2τr(τr + τi + τ−i)
(39)

βi =
τi(a−iρ−i + 2λτr)

aiρia−iρ−i + 2λ(τr + τ−i)aiρi + 2λ(τr + τi)a−iρ−i + 4λ2τr(τr + τi + τ−i)
(40)

2α =
τrr̄(a−iρ−i + 2λτr)

aiρia−iρ−i + 2λ(τr + τ−i)aiρi + 2λ(τr + τi)a−iρ−i + 4λ2τr(τr + τi + τ−i)
(41)

=
τrr̄ (aiρi + 2λτr)

aiρia−iρ−i + 2λ(τr + τ−i)aiρi + 2λ(τr + τi)a−iρ−i + 4λ2τr(τr + τi + τ−i)
(42)

With (41) and (42) we have aiρi = a−iρ−i ⇒ ai =
1
ρi

1
ρi

+ 1
ρ−i

. In another word, with presence of scale

economy, as long as the sharing rule is proportional to investors’ risk tolerances, a Nash equilibrium
exists, under which strategy functions are given as

βi =
τi

ρiρ−i
ρi+ρ−i

+ 2λ(τr + τi + τ−i)
(43)

β−i =
τ−i

ρiρ−i
ρi+ρ−i

+ 2λ(τr + τi + τ−i)
(44)

α =
1

2

τrr̄
ρiρ−i
ρi+ρ−i

+ 2λ(τr + τi + τ−i)
(45)

Plug in (36) we get i’s expected utility to be

−
exp

(
− (r̄τr+siτi)

2

2(τi+τr)
ρiρ−i

2λ(ρi+ρ−i)(τi+τr)+ρiρ−i

)
√

τ−i+τi+τr
τi+τr

2λ(ρi+ρ−i)(τi+τr)+ρiρ−i
2λ(ρi+ρ−i)(τ−i+τi+τr)+ρiρ−i

D Proof of Lemma 3.4

Proof. Under a full-information benchmark, investor i chooses

−E[e−ρi(r−λx−i)xi |sA, sB] · eρiλx2
i

= −e−ρiE[(r−λx−i)|sA,sB ]xie
1
2

Var[(r−λx−i)|sA,sB ]ρ2
i x

2
i · eρiλx2

i ,

hence we have

xi = argmaxx − e−ρiE[(r−λx−i)|sA,sB ]xe
1
2

Var[(r−λx−i)|sA,sB ]ρ2
i x

2 · eρiλx2
(46)

Still by the guess and verify method and assume that xi(si) = αi + βiAsA + βiBsB, where

43



i ∈ {A,B}

xi = argmaxx − e−ρiE[(r−λα−i−λβ−iAsA−λβ−iBsB)|sA,sB ]xe
1
2

Var[r|si]ρ2
i x

2 · eρiλx2
(47)

thus by FOC

xi = argmaxxρiE[(r − λα−i − λβ−iAsA − λβ−iBsB)|sA, sB]x− 1

2
Var[r|sA, sB]ρ2

ix
2 − ρiλx2

=
E[r|sA, sB]− λα−i − λβ−iAsA − λβ−iBsB

Var[r|sA, sB]ρi + 2λ
(48)

=

τr r̄+τAsA+τBsB
τr+τA+τB

− λα−i − λβ−iAsA − λβ−iBsB
ρi

τr+τA+τB
+ 2λ

(49)

Plug in the expressions for xi and match coefficients we have

αi =

τr r̄
τr+τA+τB

− λα−i
ρi

τr+τA+τB
+ 2λ

(50)

βiA =

τA
τr+τA+τB

− λβ−iA
ρi

τr+τA+τB
+ 2λ

(51)

βiB =

τB
τr+τA+τB

− λβ−iB
ρi

τr+τA+τB
+ 2λ

(52)

Along with similar equations derived from investor −i’s problem gives

αi =
r̄τr (λ (τA + τB + τr) + ρ−i)

ρ−i (2λ (τA + τB + τr) + ρi) + λ (τA + τB + τr) (3λ (τA + τB + τr) + 2ρi)

βiA =
τA (λ (τA + τB + τr) + ρ−i)
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βiB =
τB (λ (τA + τB + τr) + ρ−i)

ρ−i (2λ (τA + τB + τr) + ρi) + λ (τA + τB + τr) (3λ (τA + τB + τr) + 2ρi)

Hence expected utility is

− exp
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2

)

Taking expectation conditional on sA only, we get that investor A’s ex ante utility is

−

exp
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E Proof of Theorem 3.5

Proof. Assume that the omniscient and benevolent social planner orders A and B to jointly invest
x. The planner also rules that A receives q(r) in addition to her initial invest when project return
realizes, and B receives (in addition to his original investment) the remaining (r−λx)x−q(r) in net
profit. The social planner informs both A and B of the content and quality of each other’s private
information. Then the social planner chooses x and q(·) to maximize the social welfare function

γAE[−e−ρAq(r)|sA, sB] + γBE[−e−ρB(r−λx)x+ρBq(r)|sA, sB], (53)

where γA and γB are Pareto weights.
Expression (53) could be equivalently expressed as to choose x and q(·) to maximize

−
∫ (

γAe
−ρAq(r) + γBe
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2
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2 dr (54)

Hence for given x and r, q(r) maximizes
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2
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log
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)
+ ρB(r − λx)x
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(55)

Plug (55) in (54) we have that x maximizes

−
∫ γAe−ρA log
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)
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2 dr
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ρAγA
ρBγB
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− ρAρB
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2
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or equivalently x maximizes

−
∫
e
− ρAρB
ρA+ρB

(r−λx)x+rτAsA+rτBsB−
(τA+τB)r2

2
− τr(r−r̄)2
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The first-order condition gives

ρAρB
ρA + ρB

∫
(r − 2λx)e

− ρAρB
ρA+ρB

(r−λx)x+rτAsA+rτBsBg2(r)f(r)dr = 0,

and with further simplification and solving the equation we get

x =
r̄τr + τAsA + τBsB

2λ(τA + τB + τr) + ρAρB
ρA+ρB

.
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