

Intermediary Leverage Cycles and Financial Stability

Tobias Adrian and Nina Boyarchenko

The views presented here are the authors' and are not representative of the views of the Federal Reserve Bank of New York or of the Federal Reserve System

Outline

Introduction

The Model

Solution

Distortions and Amplification

Extensions

Questions about Financial Stability Policy

- Systemic distress of financial intermediaries raises questions about financial stability policies:
 - How does capital regulation affect the trade-off between the pricing of credit and the amount of systemic risk?
 - How does macroprudential policy function in equilibrium?
 - What are the welfare implications of capital regulation?
- We develop a theoretical framework to address these questions

Our Approach

- We use a standard macro model with a financial sector and add one key assumption:
 - Funding constraints of financial intermediaries are risk based, so intermediaries have to hold more capital when the riskiness of their assets increases
- This assumption is empirically motivated from risk management practices and regulatory constraints

- Equilibrium dynamics capture stylized facts:
 - Procyclical leverage of intermediary balance sheets
 - Procyclical share of intermediated credit
 - Relationship between asset risk premia and intermediary leverage

Systemic Risk

Systemic risk return trade-off

- Lower probability of distress corresponds to higher prices of risk
- Tightening capital requirements decreases probability of distress
- The relationship between household and capital requirements is inversely u-shaped

Volatility paradox

- Lower contemporaneous volatility is associated with higher probability of distress
- Lower volatility decreases effective risk aversion of intermediaries, leading to increased leverage and thus increased vulnerability to shocks

Outline

Introduction

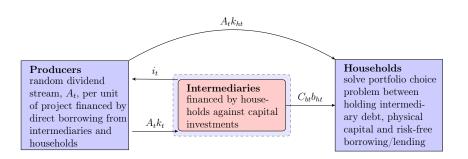
The Model

Solution

Distortions and Amplification

Extensions

Economy Structure



Production

• Aggregate amount of capital K_t evolves as

$$dK_t = (I_t - \lambda_k)K_t dt$$

Total output evolves as

$$Y_t = A_t K_t$$

• Stochastic productivity of capital $\{A_t = e^{a_t}\}_{t \geq 0}$

$$da_t = \bar{a}dt + \sigma_a dZ_{at}$$

 p_{kt}A_t denotes the price of one unit of capital in terms of the consumption good

Households

Household preferences are:

$$\mathbb{E}\left[\int_0^{+\infty}e^{-(\xi_t+
ho_ht)}\log c_tdt
ight]$$

• Liquidity preference shocks (as in Allen and Gale (1994) and Diamond and Dybvig (1983)) are $\exp(-\xi_t)$

$$d\xi_t = \sigma_\xi \rho_{\xi,a} dZ_{at} + \sigma_\xi \sqrt{1 - \rho_{\xi,a}^2} dZ_{\xi t}$$

Households do not have access to the investment technology

$$dk_{ht} = -\lambda_k k_{ht} dt$$

Households' Optimization

$$\max_{\{c_t,k_{ht},b_{ht}\}} \mathbb{E}\left[\int_0^{+\infty} e^{-(\xi_t + \rho_h t)} \log c_t dt\right]$$

subject to

$$dw_{ht} = r_{ft}w_{ht}dt + p_{kt}A_tk_{ht}(dR_{kt} - r_{ft}dt) + p_{bt}A_tb_{ht}(dR_{bt} - r_{ft}dt) - c_tdt$$

and no-shorting constraints

$$k_{ht} \ge 0$$

 $b_{ht} > 0$

Intermediaries

Financial intermediaries create new capital

$$dk_t = (\Phi(i_t) - \lambda_k) k_t dt$$

 Investment carries quadratic adjustment costs (Brunnermeier and Sannikov (2012))

$$\Phi\left(i_{t}\right) = \phi_{0}\left(\sqrt{1 + \phi_{1}i_{t}} - 1\right)$$

 Intermediaries finance investment projects through inside equity and outside risky debt giving the budget constraint

$$p_{kt}A_tk_t = p_{bt}A_tb_t + w_t$$

Intermediaries' Risk Based Capital Constraint

Risk based capital constraint (Danielsson, Shin, and Zigrand (2011))

$$\alpha \sqrt{\frac{1}{dt} \left\langle k_t d \left(p_{kt} A_t \right) \right\rangle^2} = w_t$$

Implies a time-varying leverage constraint

$$\theta_t = \frac{p_{kt} A_t k_t}{w_t} = \frac{1}{\alpha \sqrt{\frac{1}{dt} \left\langle \frac{d(p_{kt} A_t)}{p_{kt} A_t} \right\rangle^2}}$$

- Note that the constraint is such that intermediary equity is proportional to the Value-at-Risk of total assets
- This will imply that default probabilities vary over time
- Microfoundation of the risk based capital constraint in a static setting is provided by Adrian and Shin (2010)

Risk-based Capital Constraints

VaR is the potential loss in value of inventory positions due to adverse market movements over a defined time horizon with a specified confidence level. We typically employ a one-day time horizon with a 95% confidence level.

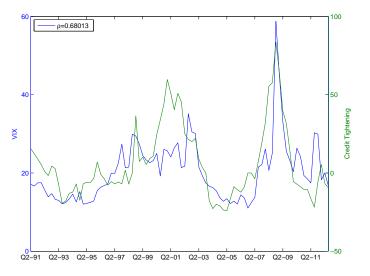
Average Daily VaR

in millions	Year Ended December		
Risk Categories	2011	2010	2009
Interest rates	\$ 94	\$ 93	\$176
Equity prices	33	68	66
Currency rates	20	32	36
Commodity prices	32	33	36
Diversification effect 1	(66)	(92)	(96)
Total	\$113	\$134	\$218

Equals the difference between total VaR and the sum of the VaRs for the four risk categories. This effect arises because the four market risk categories are not perfectly correlated.

Source: Goldman Sachs 2011 Annual Report

Commercial Bank Tightening Standards



Systemic Distress

Solvency risk defined by

$$\tau_D = \inf_{t>0} \left\{ w_t \le \bar{\omega} p_{kt} A_t K_t \right\}$$

Term structure of systemic distress

$$\delta_t(T) = \mathbb{P}(\tau_D \leq T | (w_t, \theta_t))$$

In distress

- Management changes
- Intermediary leverage reduced to $\underline{\theta} \approx 1$ by defaulting on debt
- Intermediary instantaneously restarts with wealth

$$w_{ au_D^+} = rac{ heta_{ au_D}}{ heta} w_{ au_D}$$

Intermediaries' Optimization

 Intermediaries are myopic and maximize a mean-variance objective of instantaneous wealth

$$\max_{\theta_t, i_t} \quad \mathbb{E}_t \left[\frac{dw_t}{w_t} \right] - \frac{\gamma}{2} \mathbb{V}_t \left[\frac{dw_t}{w_t} \right],$$

subject to the dynamic intermediary budget constraint

$$dw_{t} = k_{t}p_{kt}A_{t}\left(dR_{kt} + \left(\Phi\left(i_{t}\right) - i_{t}/p_{kt}\right)dt\right) - b_{t}p_{bt}A_{t}dR_{bt}$$

and the risk based capital constraint

$$\alpha \sqrt{\frac{1}{dt} \left\langle k_t d\left(p_{kt} A_t\right) \right\rangle^2} = w_t$$

Equilibrium

An equilibrium in this economy is a set of price processes $\{p_{kt}, p_{bt}, C_{bt}\}_{t \geq 0}$, a set of household decisions $\{k_{ht}, b_{ht}, c_t\}_{t \geq 0}$, and a set of intermediary decisions $\{k_t, \beta_t, i_t, \theta_t\}_{t \geq 0}$ such that:

- Taking the price processes and the intermediary decisions as given, the household's choices solve the household's optimization problem, subject to the household budget constraint.
- Taking the price processes and the household decisions as given, the intermediary's choices solve the intermediary optimization problem, subject to the intermediary wealth evolution and the risk based capital constraint.
- The capital market clears:

$$K_t = k_t + k_{ht}$$
.

The risky bond market clears:

$$b_t = b_{ht}$$
.

The risk-free debt market clears:

$$w_{ht} = p_{kt}A_tk_{ht} + p_{bt}A_tb_{ht}.$$

The goods market clears:

$$c_t = A_t (K_t - i_t k_t).$$

Related Literature

- Leverage Cycles: Geanakoplos (2003), Fostel and Geanakoplos (2008), Brunnermeier and Pedersen (2009)
- Amplification in Macroeconomy: Bernanke and Gertler (1989),
 Kiyotaki and Moore (1997)
- Financial Intermediaries and the Macroeconomy: Gertler and Kiyotaki (2012), Gertler, Kiyotaki, and Queralto (2011), He and Krishnamurthy (2012, 2013), Brunnermeier and Sannikov (2011, 2012)

Outline

Introduction

The Model

Solution

Distortions and Amplification

Extensions

Solution Strategy

• Equilibrium is characterized by two state variables, leverage θ_t and relative intermediary net worth ω_t

$$\omega_t = \frac{w_t}{w_t + w_{ht}} = \frac{w_t}{p_{kt} A_t K_t}$$

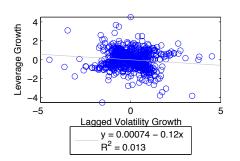
Represent state dynamics as

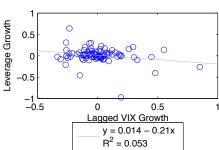
$$\begin{split} \frac{d\omega_t}{\omega_t} &= \mu_{\omega t} dt + \sigma_{\omega a,t} dZ_{at} + \sigma_{\omega \xi,t} dZ_{\xi t} \\ \frac{d\theta_t}{\theta_t} &= \mu_{\theta t} dt + \sigma_{\theta a,t} dZ_{at} + \sigma_{\theta \xi,t} dZ_{\xi t} \end{split}$$

Risk-based capital constraint implies

$$\alpha^{-2}\theta_t^{-2} = \sigma_{ka,t}^2 + \sigma_{k\xi,t}^2$$

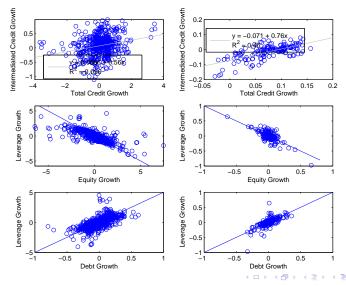
Volatility Risk





	Data	Mean	5%	Median	95%
β_0	0.014	0.000	-0.003	0.000	0.003
β_1	-0.208	-0.105	-0.187	-0.104	-0.025
R^2	0.053	0.013	0.001	0.011	0.035

Intermediary Balance Sheets I

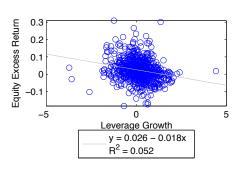


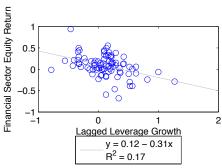
Intermediary Balance Sheets II

Table: Procyclicality of Intermediated Credit

	Data	Mean	5%	Median	95%
β_0	-0.071	-0.112	-0.203	-0.108	-0.040
β_1	0.756	0.434	0.190	0.433	0.680
R^2	0.460	0.048	0.009	0.045	0.101

Excess Returns





	Data	Mean	5%	Median	95%
β_0	0.118	0.076	0.068	0.076	0.084
β_1	-0.310	-0.031	-0.038	-0.031	-0.024
R^2	0.167	0.100	0.064	0.100	0.143

Equilibrium Prices of Risk I

Shocks

$$\begin{split} d\hat{y}_t &= \sigma_a^{-1} \left(d \log Y_t - \mathbb{E}_t \left[d \log Y_t \right] \right) = dZ_{at} \\ d\hat{\theta}_t &= \left(\sigma_{\theta a, t}^2 + \sigma_{\theta \xi, t}^2 \right)^{-\frac{1}{2}} \left(\frac{d\theta_t}{\theta_t} - \mathbb{E}_t \left[\frac{d\theta_t}{\theta_t} \right] \right) \\ &= \frac{\sigma_{\theta a, t}}{\sqrt{\sigma_{\theta a, t}^2 + \sigma_{\theta \xi, t}^2}} dZ_{at} + \frac{\sigma_{\theta \xi, t}}{\sqrt{\sigma_{\theta a, t}^2 + \sigma_{\theta \xi, t}^2}} dZ_{\xi t}. \end{split}$$

Equilibrium Prices of Risk II

Price of risk of leverage

$$\eta_{ heta t} = \sqrt{1 + rac{\left(\sigma_{ka,t} - \sigma_{a}
ight)^{2}}{\sigma_{k\xi,t}^{2}}} \left(-rac{2 heta_{t}\omega_{t}p_{kt}}{eta\left(1 - \omega_{t}
ight)}\sigma_{k\xi,t} + \sigma_{\xi}\sqrt{1 -
ho_{\xi,a}^{2}}
ight)$$

 Price of risk of leverage is always positive (Adrian, Etula, and Muir (2013)), and depends on leverage growth in a nonmonotonic fashion (Adrian, Moench, and Shin (2010) find a negative relationship)

Equilibrium Prices of Risk III

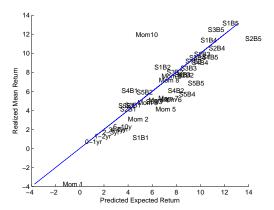


Figure: Source: Adrian, Etula, and Muir (2013)

27

Equilibrium Prices of Risk IV

Price of risk of output

$$\eta_{yt} = \sigma_{\mathsf{a}} + \sigma_{\xi} \left(
ho_{\xi,\mathsf{a}} - rac{\sigma_{\mathsf{ka},t} - \sigma_{\mathsf{a}}}{\sigma_{\mathsf{k}\xi,t}} \sqrt{1 -
ho_{\xi,\mathsf{a}}^2}
ight)$$

- Switches sign, consistent with insignificant estimates of price of output risk
- Usually becomes negative when exposure to liquidity shock is small

Outline

Introduction

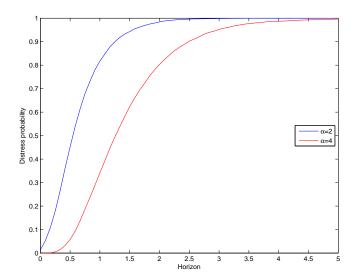
The Model

Solution

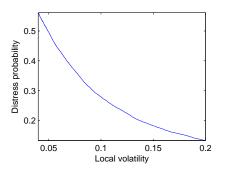
Distortions and Amplification

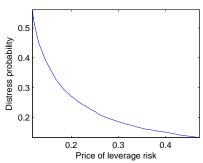
Extensions

Term Structure of Systemic Risk



Volatility Paradox

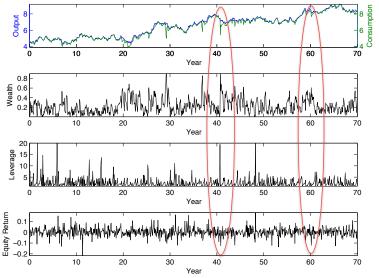




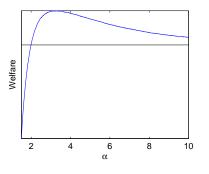
Constant Leverage Benchmark

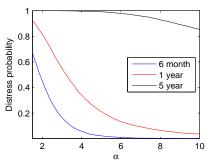
- Constant expected output and consumption growth
- But lower level of output and consumption growth
- Constant investment and price of capital
- Liquidity shocks have no impact on real activity

A Sample Path of the Economy



Household Welfare





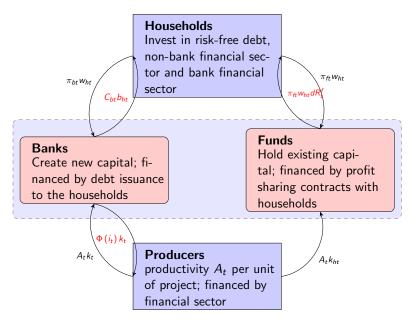
Outline

Extensions

January, 2014

Alternative Specification

- Two financial sectors: banks and funds
- Leveraged intermediaries have VaR constraint (as in the current paper) while funds have skin in the game constraint (as in He and Krishnamurthy (2012, 2013))
- Bank managers, fund managers, and households have log utility
- VaR constraint sometimes binds



January, 2014

Additional Research

• Tradeoff between capital and liquidity regulation

Stress tests

Intermediation chains

▶ More

Conclusion

- Dynamic, general equilibrium theory of financial intermediaries' leverage cycle with endogenous amplification and endogenous systemic risk
- Conceptual basis for policies towards financial stability
- Systemic risk return trade-off: tighter intermediary capital requirements tend to shift the term structure of systemic downward, at the cost of increased prices of risk today
- Model captures important stylized facts:
 - Procyclical intermediary leverage
 - Procyclicality of intermediated credit
 - 3 Financial sector equity return and intermediary leverage growth
 - Exposure to intermediary leverage shocks as pricing factor

39

- Tobias Adrian and Hyun Song Shin. Procyclical Leverage and Value-at-Risk. Federal Reserve Bank of New York Staff Reports No. 338, 2010.
- Tobias Adrian, Emanuel Moench, and Hyun Song Shin. Financial Intermediation, Asset Prices, and Macroeconomic Dynamics. Federal Reserve Bank of New York Staff Reports No. 442, 2010.
- Tobias Adrian, Erkko Etula, and Tyler Muir. Financial Intermediaries and the Cross-Section of Asset Returns. *Journal of Finance*, 2013. Forthcoming.
- Franklin Allen and Douglas Gale. Limited market participation and volatility of asset prices. *American Economic Review*, 84:933–955, 1994.
- Ben Bernanke and Mark Gertler. Agency Costs, Net Worth, and Business Fluctuations. *American Economic Review*, 79(1):14–31, 1989.
- Markus K. Brunnermeier and Lasse Heje Pedersen. Market Liquidity and Funding Liquidity. *Review of Financial Studies*, 22(6):2201–2238, 2009.
- Markus K. Brunnermeier and Yuliy Sannikov. The I Theory of Money. Unpublished working paper, Princeton University, 2011.
- Markus K. Brunnermeier and Yuliy Sannikov. A Macroeconomic Model with a Financial Sector. Unpublished working paper, Princeton University, 2012.

40

- Jon Danielsson, Hyun Song Shin, and Jean-Pierre Zigrand. Balance sheet capacity and endogenous risk. Working Paper, 2011.
- Douglas W. Diamond and Philip H. Dybvig. Bank runs, deposit insurance and liquidity. *Journal of Political Economy*, 93(1):401–419, 1983.
- Ana Fostel and John Geanakoplos. Leverage Cycles and the Anxious Economy. *American Economic Review*, 98(4):1211–1244, 2008.
- John Geanakoplos. Liquidity, Default, and Crashes: Endogenous Contracts in General Equilibrium. In M. Dewatripont, L.P. Hansen, and S.J. Turnovsky, editors, *Advances in Economics and Econometrics II*, pages 107–205. Econometric Society, 2003.
- Mark Gertler and Nobuhiro Kiyotaki. Banking, Liquidity, and Bank Runs in an Infinite Horizon Economy. Unpublished working papers, Princeton University, 2012.
- Mark Gertler, Nobuhiro Kiyotaki, and Albert Queralto. Financial Crises, Bank Risk Exposure, and Government Financial Policy. Unpublished working papers, Princeton University, 2011.
- Zhiguo He and Arvind Krishnamurthy. A Model of Capital and Crises. *Review of Economic Studies*, 79(2):735–777, 2012.

Zhiguo He and Arvind Krishnamurthy. Intermediary Asset Pricing. *American Economic Review*, 103(2):732–770, 2013.

Nobuhiro Kiyotaki and John Moore. Credit Cycles. *Journal of Political Economy*, 105(2):211–248, 1997.

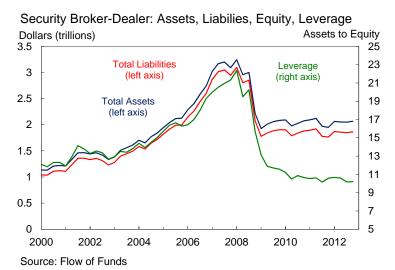
Outline

Empirical Evidence

Additional Results

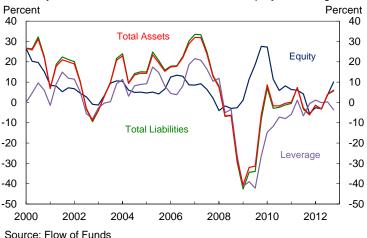
Risk-Averse Intermediaries

Broker-Dealer Balance Sheets: Levels

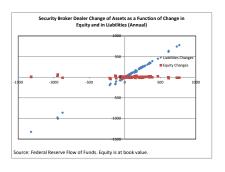


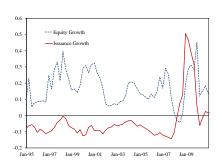
Broker-Dealer Balance Sheets: Annual Growth

Security Broker-Dealer: Assets, Liabilies, Equity, Leverage

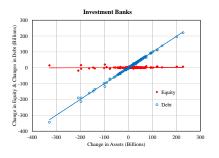


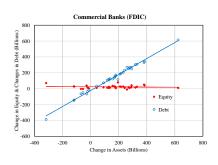
Broker-Dealer Balance Sheets: Adjustments





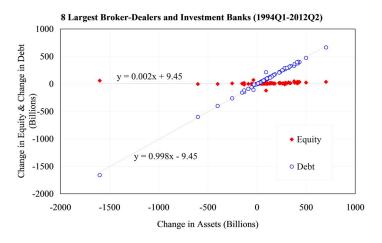
Balance Sheet Adjustments



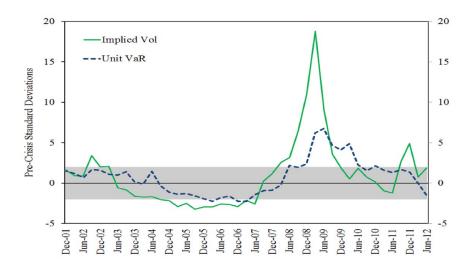


◆ Back

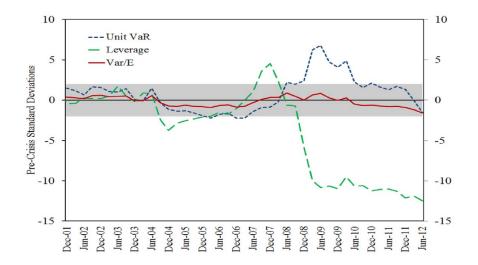
Broker-Dealers and Banks



Broker-Dealer VaR



Broker-Dealer VaR



Outline

Empirical Evidence

Additional Results

Risk-Averse Intermediaries

Simulation Parameters

Parameter	Value
ā	0.0651
σ_{a}	0.388
ho	0.06
$ ho_{\it h} - \sigma_{\it \xi}^2/2$	0.05
ϕ_{0}	0.1
ϕ_{1}	20
λ_{k}	0.03
$ ho_{\xi,a}$	0
σ_{ξ}	0.0388
α	2.5

- Ref.: Brunnermeier and Sannikov (2012)
- Monthly simulation frequency
- 10000 paths; 70 years (Back)

Equilibrium

Lemma 1

$$\begin{split} \mu_{Rk,t} &= \mathcal{K}_0 \left(\omega_t, \theta_t \right) + \mathcal{K}_a \left(\omega_t, \theta_t \right) \sigma_{ka,t} + \sigma_\xi \sqrt{1 - \rho_{\xi,a}^2} \sigma_{k\xi,t} \\ \mu_{Rb,t} &= \mathcal{B}_0 \left(\omega_t, \theta_t \right) + \mathcal{B}_a \left(\omega_t, \theta_t \right) \sigma_{ka,t} + \mathcal{B}_\xi \left(\omega_t, \theta_t \right) \sigma_{k\xi,t} \\ \mu_{\omega t} &= \mathcal{O}_0 \left(\omega_t, \theta_t \right) + \mathcal{O}_a \left(\omega_t, \theta_t \right) \sigma_{ka,t} + \mathcal{O}_\xi \left(\omega_t, \theta_t \right) \sigma_{k\xi,t} \\ \mu_{\theta t} &= \mathcal{S}_0 \left(\omega_t, \theta_t \right) + \mathcal{S}_a \left(\omega_t, \theta_t \right) \sigma_{ka,t} - \mathcal{O}_\xi \left(\omega_t, \theta_t \right) \sigma_{k\xi,t} \\ r_{ft} &= \mathcal{R}_0 \left(\omega_t, \theta_t \right) + \mathcal{R}_a \left(\omega_t, \theta_t \right) \sigma_{ka,t} - \mathcal{O}_\xi \left(\omega_t, \theta_t \right) \sigma_{k\xi,t} \\ \sigma_{ba,t} &= \frac{2\theta_t \omega_t p_{kt} + \beta \left(1 - \omega_t \right)}{\beta \omega_t \left(\theta_t - 1 \right)} \sigma_a - \frac{2\theta_t \omega_t p_{kt} + \beta \left(1 - \theta_t \omega_t \right)}{\beta \omega_t \left(\theta_t - 1 \right)} \sigma_{ka,t} \\ \sigma_{\theta b,t} &= -\frac{2\theta_t \omega_t p_{kt} + \beta \left(1 - \omega_t \right)}{\beta \omega_t} \left(\sigma_{ka,t} - \sigma_a \right) \\ \sigma_{\theta \xi,t} &= -\frac{2\theta_t \omega_t p_{kt} + \beta \left(1 - \omega_t \right)}{\beta \omega_t} \sigma_{k\xi,t} \\ \sigma_{k\xi,t} &= -\sqrt{\frac{\theta_t^{-2}}{\alpha^2} - \sigma_{ka,t}^2}} \\ \sigma_{k\xi,t} &= -\sqrt{\frac{\theta_t^{-2}}{\alpha^2} - \sigma_{ka,t}^2}} \\ \sigma_{ka,t} &= \frac{\theta_t^{-2}}{\alpha^2} + \sigma_a^2 \left(1 + \frac{1 - \omega_t}{\omega_t \left(2\theta_t \omega_t p_{kt} + \beta \left(1 - \omega_t \right) \right)} \right). \end{split}$$

Risk-free Rate

Household Euler equation

$$r_{\mathrm{ft}} = \left(\rho_{\mathrm{h}} - \frac{\sigma_{\xi}^{2}}{2}\right) + \frac{1}{dt}\mathbb{E}\left[\frac{dc_{t}}{c_{t}}\right] - \frac{1}{dt}\mathbb{E}\left[\frac{\left\langle dc_{t}\right\rangle^{2}}{c_{t}^{2}} + \frac{\left\langle dc_{t}, d\xi_{t}\right\rangle^{2}}{c_{t}}\right]$$

Goods market clearing implies

$$\begin{aligned} dc_t &= d\left(K_t A_t - i_t k_t A_t\right) \\ &= A_t dK_t + \left(K_t - i_t k_t\right) dA_t - A_t k_t di_t - A_t i_t dk_t - k_t \left\langle di_t, dA_t \right\rangle \end{aligned}$$

Stress Tests

Inherent limitations to VaR include [...] VaR does not estimate potential losses over longer time horizons where moves may be extreme.

Stress Tests

Could consider a forward-looking capital constraint

$$\theta_t^{-1} \geq \vartheta \sqrt{\mathbb{E}_t \left[\int_t^T \left(\sigma_{\textit{ka},\textit{s}}^2 + \sigma_{\textit{k}\xi,\textit{s}}^2 \right) \textit{ds} \right]}.$$

- Looks like a robust-control constraint
- Rewrite intermediary optimization as

$$V_{t}(\vartheta) = \max_{\{i,\beta,k,\alpha_{s}\}} \mathbb{E}_{t} \left[\int_{t}^{\tau_{D}} e^{-\rho(s-t)} w_{t}(i,\beta,k) \, ds \right]$$

s.t.

$$\frac{\theta_s^{-1}}{\alpha_s} \ge \sqrt{\sigma_{ka,s}^2 + \sigma_{k\xi,s}^2}$$

$$\theta_t^{-1} = \vartheta \sqrt{\mathbb{E}_t \left[\int_t^T \frac{\theta_s^{-2}}{\alpha_s^2} ds \right]}.$$

"Choose optimal capital plan"

Outline

Empirical Evidence

Additional Results

Risk-Averse Intermediaries

Intermediaries

Banks Create new capital;

financed by debt issuance to the households

Funds

Hold existing capital; financed by profit sharing contracts with households

- Two types of intermediaries: non-bank ("fund") and bank
- Unit mass of specialists manage funds; unit mass of bankers manage banks
- Future work: interactions between different intermediary types

Fund Sector

- Modeled as in He and Krishnamurthy (2012, 2013)
- Fund is formed each period t as a random match between a specialist and a household
- Specialist contributes all of his wealth wft to the fund
- Household contributes up to mwft to the fund
- m: tightness of the specialists' capital constraint
- Specialists control the allocation of fund capital to holding capital projects and risk-free debt

Notice:

- No new capital project creation
- No risky debt

Specialists' Optimization I

Specialists' maximize expected consumption

$$\max_{\{c_{ft},\theta_{ft}\}} \mathbb{E}\left[\int_0^{+\infty} \mathrm{e}^{-\rho t} \log c_{ft} dt\right],$$

subject to the dynamic budget constraint

$$\frac{dw_{ft}}{w_{ft}} = \theta_{ft} \left(dR_{kt} - r_{ft} dt \right) + r_{ft} dt - \frac{c_{ft}}{w_{ft}} dt$$

Specialists' Optimization II

Lemma 2

The specialists consume a constant fraction of their wealth

$$c_{ft} = \rho w_{ft},$$

and allocate the fund's capital as a mean-variance investor

$$\theta_{ft} = \frac{\mu_{Rk,t} - r_{ft}}{\sigma_{ka,t}^2 + \sigma_{k\xi,t}^2}.$$

Banking Sector

Banks create new capital

$$dk_t = (\Phi(i_t) - \lambda_k) k_t dt$$

 Investment carries quadratic adjustment costs (Brunnermeier and Sannikov (2012))

$$\Phi\left(i_{t}\right) = \phi_{0}\left(\sqrt{1 + \phi_{1}i_{t}} - 1\right)$$

 Banks finance investment projects through inside equity and outside risky debt giving the budget constraint

$$p_{kt}A_tk_t = p_{bt}A_tb_t + w_t$$

Bankers' Optimization I

The representative banker solves

$$\max_{\theta_t, i_t, c_{bt}} \mathbb{E}\left[\int_0^{+\infty} e^{-\rho t} \log c_{bt} dt \right]$$

subject to the dynamic budget constraint

$$\frac{dw_t}{w_t} = \theta_t \left(dR_{kt} - r_{ft}dt + \left(\Phi \left(i_t \right) - \frac{i_t}{p_{kt}} \right) dt \right) - (\theta - 1) \left(dR_{bt} - r_{ft}dt \right) + r_{ft}dt - \frac{c_{bt}}{w_t}dt,$$

and the risk-based capital constraint

$$\theta_t \le \frac{1}{\alpha \sqrt{\sigma_{k\mathsf{a},t}^2 + \sigma_{k\xi,t}^2}}.$$

Bankers' Optimization II Lemma 3

The representative banker optimally consumes at rate

$$c_{bt} = \rho w_t$$

and invests in new projects at rate

$$i_t = rac{1}{\phi_1} \left(rac{\phi_0^2 \phi_1^2}{4} p_{kt}^2 - 1
ight).$$

While the capital constraint in not binding, the banking system leverage is

$$\theta_{t} = \frac{\sigma_{ba,t}^{2} - \sigma_{ka,t}\sigma_{ba,t} + \sigma_{b\xi,t}^{2} - \sigma_{k\xi,t}\sigma_{b\xi,t} - (\mu_{Rb,t} - r_{ft})}{\left(\left(\sigma_{ba,t} - \sigma_{ka,t}\right)^{2} + \left(\sigma_{b\xi,t} - \sigma_{k\xi,t}\right)^{2}\right)} + \frac{\left(\mu_{Rk,t} + \Phi\left(i_{t}\right) - \frac{i_{t}}{p_{kt}} - r_{ft}\right)}{\left(\left(\sigma_{ba,t} - \sigma_{ka,t}\right)^{2} + \left(\sigma_{b\xi,t} - \sigma_{k\xi,t}\right)^{2}\right)}.$$

Households

Household preferences are:

$$\mathbb{E}\left[\int_0^{+\infty} e^{-(\xi_t + \rho_h t)} \log c_t dt\right]$$

• Liquidity preference shocks (as in Allen and Gale (1994) and Diamond and Dybvig (1983)) are $\exp(-\xi_t)$

$$d\xi_t = \sigma_\xi dZ_{\xi t}$$

 Households allocate wealth between risky bank debt and contributions to funds

Households' Optimization I

The representative household solves

$$\max_{\substack{\pi_{kt}, \pi_{bt} \\ c_t}} \mathbb{E}\left[\int_0^{+\infty} e^{-\xi_t - \rho_h t} \log c_t dt\right],$$

subject to the dynamic budget constraint

$$\frac{dw_{ht}}{w_{ht}} = \pi_{kt}\theta_{ft}\left(dR_{kt} - r_{ft}dt\right) + \pi_{bt}\left(dR_{bt} - r_{ft}dt\right) + r_{ft}dt - \frac{c_t}{w_{ht}}dt,$$

the skin-in-the-game constraint

$$\pi_{kt} w_{ht} \leq m w_{ft}$$
,

and no shorting constraints

$$\pi_{kt} \geq 0$$
 $b_{ht} > 0$.

ht \leq U.

Households' Optimization II

Lemma 4

The households' optimal consumption choice satisfies

$$c_t = \left(\rho_h - \frac{\sigma_\xi^2}{2}\right) w_{ht}.$$

While the households are unconstrained in their wealth allocation, the households' optimal portfolio choice is given by

$$\begin{bmatrix} \pi_{kt} \\ \pi_{bt} \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} \theta_{ft}\sigma_{ka,t} & \theta_{ft}\sigma_{k\xi,t} \\ \sigma_{ba,t} & \sigma_{b\xi,t} \end{bmatrix} \begin{bmatrix} \theta_{ft}\sigma_{ka,t} & \sigma_{ba,t} \\ \theta_{ft}\sigma_{k\xi,t} & \sigma_{b\xi,t} \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} \theta_{ft} (\mu_{Rk,t} - r_{ft}) \\ \mu_{Rb,t} - r_{ft} \end{bmatrix} \\ - \begin{bmatrix} \theta_{ft}\sigma_{ka,t} & \sigma_{ba,t} \\ \theta_{ft}\sigma_{k\xi,t} & \sigma_{b\xi,t} \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ \sigma_{\xi} \end{bmatrix}.$$

Equilibrium

An equilibrium in the economy is a set of price processes $\{p_{kt}, p_{bt}, r_{ft}\}_{t\geq 0}$, a set of household decisions $\{\pi_{kt}, b_{ht}, c_t\}_{t>0}$, a set of specialist decisions $\{k_{ft}, c_{ft}\}_{t>0}$, and a set of intermediary decisions $\{k_t, i_t, b_t, c_{bt}\}_{t>0}$ such that the following apply:

- Taking the price processes, the specialist decisions and the intermediary decisions as given, the household's choices solve the household's optimization problem, subject to the household budget constraint, the no shorting constraints and the skin-in-the-game constraint for the funds.
- Taking the price processes, the specialist decisions and the household decisions as given, the intermediary's choices solve the intermediary's optimization problem, subject to the intermediary budget constraint, and the regulatory constraint.
- Taking the price processes, the household decisions and the intermediary decisions as given, the specialist's choices solve the specialist's optimization problem, subject to the specialist budget constraint.
- The capital market clears at all dates

$$k_t + k_{ft} = K_t$$
.

The risky bond market clears

$$b_t = b_{ht}$$
.

The risk-free debt market clears

$$w_t + w_{ft} + w_{ht} = p_{kt}A_tK_t.$$

The goods market clears

$$c_t + c_{bt} + c_{ft} + A_t k_t i_t = K_t A_t.$$

